湍流结构对带有三角形粗糙度单元的Rayleigh–Bénard对流换热的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxian Xia, X. Qiu, Y. Qian
{"title":"湍流结构对带有三角形粗糙度单元的Rayleigh–Bénard对流换热的影响","authors":"Yuxian Xia, X. Qiu, Y. Qian","doi":"10.1080/14685248.2022.2146125","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is a widely accepted conclusion that the wall roughness do not always enhance the heat transport of the turbulent thermal convection. In this paper, the heat transfer efficiency is statistically investigated from the perspective of turbulent structure. The effect of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular rough element on the top and bottom plates is numerically simulated by a lattice Boltzmann method. We use a clustering method to identify complex turbulent structures associated with intense events. The reduction of the Nusselt number is obtained for small roughness height H/L, while the enhancement of heat transport appears for large H/L. For the large H/L case, the positive temperature structures occupying the negative heat transfer events reduce the efficiency of the heat transfer. On the contrary, the negative temperature turbulent structures boost the heat transfer. By analyzing the conditional average field, we found that the enhancement of the heat transfer for large H/L cases is due to that the negative temperature structures play a dominant role. For small H/L cases, the positive temperature structures inhibit the heat transfer. Furthermore, the more positive and negative temperature structures for large H/L cases are generated near the solid wall and the corner of the box. The physical explanation for the Nu enhancement is that the more secondary vortices are generated by the interaction of these turbulent structures and the rough wall, leading to more plumes ejected from the boundary layers to the bulk.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular roughness element\",\"authors\":\"Yuxian Xia, X. Qiu, Y. Qian\",\"doi\":\"10.1080/14685248.2022.2146125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There is a widely accepted conclusion that the wall roughness do not always enhance the heat transport of the turbulent thermal convection. In this paper, the heat transfer efficiency is statistically investigated from the perspective of turbulent structure. The effect of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular rough element on the top and bottom plates is numerically simulated by a lattice Boltzmann method. We use a clustering method to identify complex turbulent structures associated with intense events. The reduction of the Nusselt number is obtained for small roughness height H/L, while the enhancement of heat transport appears for large H/L. For the large H/L case, the positive temperature structures occupying the negative heat transfer events reduce the efficiency of the heat transfer. On the contrary, the negative temperature turbulent structures boost the heat transfer. By analyzing the conditional average field, we found that the enhancement of the heat transfer for large H/L cases is due to that the negative temperature structures play a dominant role. For small H/L cases, the positive temperature structures inhibit the heat transfer. Furthermore, the more positive and negative temperature structures for large H/L cases are generated near the solid wall and the corner of the box. The physical explanation for the Nu enhancement is that the more secondary vortices are generated by the interaction of these turbulent structures and the rough wall, leading to more plumes ejected from the boundary layers to the bulk.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2022.2146125\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2146125","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一个公认的结论是,壁面粗糙度并不总是能增强湍流热对流的热传输。本文从湍流结构的角度对传热效率进行了统计研究。采用格子Boltzmann方法数值模拟了湍流结构对带有三角形粗糙单元的Rayleigh–Bénard对流传热的影响。我们使用聚类方法来识别与强烈事件相关的复杂湍流结构。对于小的粗糙度高度H/L,Nusselt数减小,而对于大的H/L,热传输增强。对于大的H/L情况,占据负传热事件的正温度结构降低了传热效率。相反,负温度湍流结构促进了热传递。通过对条件平均场的分析,我们发现大H/L情况下传热的增强是由于负温度结构起主导作用。对于小的H/L情况,正温度结构抑制了热传递。此外,对于大的H/L情况,在实心壁和盒子的角落附近产生了更多的正温度结构和负温度结构。Nu增强的物理解释是,这些湍流结构和粗糙壁的相互作用产生了更多的二次涡流,导致更多的羽流从边界层喷射到主体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular roughness element
ABSTRACT There is a widely accepted conclusion that the wall roughness do not always enhance the heat transport of the turbulent thermal convection. In this paper, the heat transfer efficiency is statistically investigated from the perspective of turbulent structure. The effect of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular rough element on the top and bottom plates is numerically simulated by a lattice Boltzmann method. We use a clustering method to identify complex turbulent structures associated with intense events. The reduction of the Nusselt number is obtained for small roughness height H/L, while the enhancement of heat transport appears for large H/L. For the large H/L case, the positive temperature structures occupying the negative heat transfer events reduce the efficiency of the heat transfer. On the contrary, the negative temperature turbulent structures boost the heat transfer. By analyzing the conditional average field, we found that the enhancement of the heat transfer for large H/L cases is due to that the negative temperature structures play a dominant role. For small H/L cases, the positive temperature structures inhibit the heat transfer. Furthermore, the more positive and negative temperature structures for large H/L cases are generated near the solid wall and the corner of the box. The physical explanation for the Nu enhancement is that the more secondary vortices are generated by the interaction of these turbulent structures and the rough wall, leading to more plumes ejected from the boundary layers to the bulk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信