Jie Yang, Zhenhao Jiang, Tingting Pan, Yueqi Chen, W. Pedrycz
{"title":"基于GAN的过采样方法在表格二分类问题中的应用","authors":"Jie Yang, Zhenhao Jiang, Tingting Pan, Yueqi Chen, W. Pedrycz","doi":"10.3233/ida-220383","DOIUrl":null,"url":null,"abstract":"Data-imbalanced problems are present in many applications. A big gap in the number of samples in different classes induces classifiers to skew to the majority class and thus diminish the performance of learning and quality of obtained results. Most data level imbalanced learning approaches generate new samples only using the information associated with the minority samples through linearly generating or data distribution fitting. Different from these algorithms, we propose a novel oversampling method based on generative adversarial networks (GANs), named OS-GAN. In this method, GAN is assigned to learn the distribution characteristics of the minority class from some selected majority samples but not random noise. As a result, samples released by the trained generator carry information of both majority and minority classes. Furthermore, the central regularization makes the distribution of all synthetic samples not restricted to the domain of the minority class, which can improve the generalization of learning models or algorithms. Experimental results reported on 14 datasets and one high-dimensional dataset show that OS-GAN outperforms 14 commonly used resampling techniques in terms of G-mean, accuracy and F1-score.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oversampling method based on GAN for tabular binary classification problems\",\"authors\":\"Jie Yang, Zhenhao Jiang, Tingting Pan, Yueqi Chen, W. Pedrycz\",\"doi\":\"10.3233/ida-220383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-imbalanced problems are present in many applications. A big gap in the number of samples in different classes induces classifiers to skew to the majority class and thus diminish the performance of learning and quality of obtained results. Most data level imbalanced learning approaches generate new samples only using the information associated with the minority samples through linearly generating or data distribution fitting. Different from these algorithms, we propose a novel oversampling method based on generative adversarial networks (GANs), named OS-GAN. In this method, GAN is assigned to learn the distribution characteristics of the minority class from some selected majority samples but not random noise. As a result, samples released by the trained generator carry information of both majority and minority classes. Furthermore, the central regularization makes the distribution of all synthetic samples not restricted to the domain of the minority class, which can improve the generalization of learning models or algorithms. Experimental results reported on 14 datasets and one high-dimensional dataset show that OS-GAN outperforms 14 commonly used resampling techniques in terms of G-mean, accuracy and F1-score.\",\"PeriodicalId\":50355,\"journal\":{\"name\":\"Intelligent Data Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Data Analysis\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ida-220383\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-220383","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Oversampling method based on GAN for tabular binary classification problems
Data-imbalanced problems are present in many applications. A big gap in the number of samples in different classes induces classifiers to skew to the majority class and thus diminish the performance of learning and quality of obtained results. Most data level imbalanced learning approaches generate new samples only using the information associated with the minority samples through linearly generating or data distribution fitting. Different from these algorithms, we propose a novel oversampling method based on generative adversarial networks (GANs), named OS-GAN. In this method, GAN is assigned to learn the distribution characteristics of the minority class from some selected majority samples but not random noise. As a result, samples released by the trained generator carry information of both majority and minority classes. Furthermore, the central regularization makes the distribution of all synthetic samples not restricted to the domain of the minority class, which can improve the generalization of learning models or algorithms. Experimental results reported on 14 datasets and one high-dimensional dataset show that OS-GAN outperforms 14 commonly used resampling techniques in terms of G-mean, accuracy and F1-score.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.