基于自然语言处理的玻璃文献元分析及结构因子数据库提取

Q1 Physics and Astronomy
Mohd Zaki , Sahith Reddy Namireddy , Tanu Pittie , Vaibhav Bihani , Shweta Rani Keshri , Vineeth Venugopal , Nitya Nand Gosvami , Jayadeva , N.M. Anoop Krishnan
{"title":"基于自然语言处理的玻璃文献元分析及结构因子数据库提取","authors":"Mohd Zaki ,&nbsp;Sahith Reddy Namireddy ,&nbsp;Tanu Pittie ,&nbsp;Vaibhav Bihani ,&nbsp;Shweta Rani Keshri ,&nbsp;Vineeth Venugopal ,&nbsp;Nitya Nand Gosvami ,&nbsp;Jayadeva ,&nbsp;N.M. Anoop Krishnan","doi":"10.1016/j.nocx.2022.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Although scientific journals stand as a reliable peer-reviewed source of data, it is often too tedious to manually extract relevant information from papers. This could be attributed to the unstructured data such as images, text, captions, and non-standard reporting of data in tables. Here, using natural language processing (NLP), we introduce a corpus of around ~100,000 glass science-related research papers and 106,238 images published in them, that allow for easy navigation and query-based searching through the database. We perform a meta-analysis of the literature in the corpus employing NLP tools. Specifically, we analyze the trends in the number of publications based on countries, research areas, and journals, thereby giving a broad overview of the progress in glass science over the last six decades. Further, as a demonstration of information extraction, we extract the structure factor data of ~450 glass compositions, thereby creating the first-ever public repository on the structure factor of glasses.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"15 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000231/pdfft?md5=43aa4e2b361ca09396dee7fb8159452d&pid=1-s2.0-S2590159122000231-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Natural language processing-guided meta-analysis and structure factor database extraction from glass literature\",\"authors\":\"Mohd Zaki ,&nbsp;Sahith Reddy Namireddy ,&nbsp;Tanu Pittie ,&nbsp;Vaibhav Bihani ,&nbsp;Shweta Rani Keshri ,&nbsp;Vineeth Venugopal ,&nbsp;Nitya Nand Gosvami ,&nbsp;Jayadeva ,&nbsp;N.M. Anoop Krishnan\",\"doi\":\"10.1016/j.nocx.2022.100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although scientific journals stand as a reliable peer-reviewed source of data, it is often too tedious to manually extract relevant information from papers. This could be attributed to the unstructured data such as images, text, captions, and non-standard reporting of data in tables. Here, using natural language processing (NLP), we introduce a corpus of around ~100,000 glass science-related research papers and 106,238 images published in them, that allow for easy navigation and query-based searching through the database. We perform a meta-analysis of the literature in the corpus employing NLP tools. Specifically, we analyze the trends in the number of publications based on countries, research areas, and journals, thereby giving a broad overview of the progress in glass science over the last six decades. Further, as a demonstration of information extraction, we extract the structure factor data of ~450 glass compositions, thereby creating the first-ever public repository on the structure factor of glasses.</p></div>\",\"PeriodicalId\":37132,\"journal\":{\"name\":\"Journal of Non-Crystalline Solids: X\",\"volume\":\"15 \",\"pages\":\"Article 100103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590159122000231/pdfft?md5=43aa4e2b361ca09396dee7fb8159452d&pid=1-s2.0-S2590159122000231-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Crystalline Solids: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590159122000231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5

摘要

尽管科学期刊是可靠的同行评议的数据来源,但手工从论文中提取相关信息往往过于繁琐。这可能归因于非结构化数据,如图像、文本、标题和表中数据的非标准报告。在这里,我们使用自然语言处理(NLP),引入了一个大约10万篇与玻璃科学相关的研究论文和106,238张发表在其中的图像的语料库,允许在数据库中轻松导航和基于查询的搜索。我们使用NLP工具对语料库中的文献进行了荟萃分析。具体来说,我们分析了基于国家、研究领域和期刊的出版物数量的趋势,从而对过去六十年来玻璃科学的进展进行了广泛的概述。此外,作为信息提取的演示,我们提取了约450种玻璃成分的结构因子数据,从而创建了第一个关于玻璃结构因子的公共存储库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Natural language processing-guided meta-analysis and structure factor database extraction from glass literature

Natural language processing-guided meta-analysis and structure factor database extraction from glass literature

Although scientific journals stand as a reliable peer-reviewed source of data, it is often too tedious to manually extract relevant information from papers. This could be attributed to the unstructured data such as images, text, captions, and non-standard reporting of data in tables. Here, using natural language processing (NLP), we introduce a corpus of around ~100,000 glass science-related research papers and 106,238 images published in them, that allow for easy navigation and query-based searching through the database. We perform a meta-analysis of the literature in the corpus employing NLP tools. Specifically, we analyze the trends in the number of publications based on countries, research areas, and journals, thereby giving a broad overview of the progress in glass science over the last six decades. Further, as a demonstration of information extraction, we extract the structure factor data of ~450 glass compositions, thereby creating the first-ever public repository on the structure factor of glasses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信