Taotao Zhou , Shan Jiang , Te Han , Shun-Peng Zhu , Yinan Cai
{"title":"基于概率物理信息神经网络的疲劳寿命预测的物理一致性框架","authors":"Taotao Zhou , Shan Jiang , Te Han , Shun-Peng Zhu , Yinan Cai","doi":"10.1016/j.ijfatigue.2022.107234","DOIUrl":null,"url":null,"abstract":"<div><p><span>Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning<span> physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent </span></span>backpropagation<span> capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.</span></p></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"166 ","pages":"Article 107234"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network\",\"authors\":\"Taotao Zhou , Shan Jiang , Te Han , Shun-Peng Zhu , Yinan Cai\",\"doi\":\"10.1016/j.ijfatigue.2022.107234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning<span> physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent </span></span>backpropagation<span> capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.</span></p></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"166 \",\"pages\":\"Article 107234\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112322004844\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112322004844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network
Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent backpropagation capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.