{"title":"基于3D图像FPCA的风险相关脑区检测和个体风险分类","authors":"Ying Chen, W. Härdle, Qiang He, Piotr Majer","doi":"10.1515/strm-2017-0011","DOIUrl":null,"url":null,"abstract":"Abstract Understanding how people make decisions from risky choices has attracted increasing attention of researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk preference through mathematical modeling, neuroscientists answer the question by exploring the neural activities of the brain. We propose a model-free method, 3-dimensional image functional principal component analysis (3DIF), to provide a connection between active risk related brain region detection and individual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using the 3DIF method. In real data analysis, five important risk related brain regions are detected, including parietal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula (aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies both strongly and weakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves 73 -88 overall accuracy, among which 90 -100 strongly risk averse subjects and 49 -71 weakly risk averse subjects are correctly classified with leave-k-out cross validations.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":"35 1","pages":"110 - 89"},"PeriodicalIF":1.3000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2017-0011","citationCount":"2","resultStr":"{\"title\":\"Risk related brain regions detection and individual risk classification with 3D image FPCA\",\"authors\":\"Ying Chen, W. Härdle, Qiang He, Piotr Majer\",\"doi\":\"10.1515/strm-2017-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Understanding how people make decisions from risky choices has attracted increasing attention of researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk preference through mathematical modeling, neuroscientists answer the question by exploring the neural activities of the brain. We propose a model-free method, 3-dimensional image functional principal component analysis (3DIF), to provide a connection between active risk related brain region detection and individual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using the 3DIF method. In real data analysis, five important risk related brain regions are detected, including parietal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula (aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies both strongly and weakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves 73 -88 overall accuracy, among which 90 -100 strongly risk averse subjects and 49 -71 weakly risk averse subjects are correctly classified with leave-k-out cross validations.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":\"35 1\",\"pages\":\"110 - 89\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2017-0011\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2017-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2017-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Risk related brain regions detection and individual risk classification with 3D image FPCA
Abstract Understanding how people make decisions from risky choices has attracted increasing attention of researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk preference through mathematical modeling, neuroscientists answer the question by exploring the neural activities of the brain. We propose a model-free method, 3-dimensional image functional principal component analysis (3DIF), to provide a connection between active risk related brain region detection and individual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using the 3DIF method. In real data analysis, five important risk related brain regions are detected, including parietal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula (aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies both strongly and weakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves 73 -88 overall accuracy, among which 90 -100 strongly risk averse subjects and 49 -71 weakly risk averse subjects are correctly classified with leave-k-out cross validations.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.