{"title":"分层变化对吕宋海峡M2内潮产生的影响","authors":"Zheng Guo, A. Cao, Xianqing Lv, Jinbao Song","doi":"10.1080/07055900.2020.1767534","DOIUrl":null,"url":null,"abstract":"ABSTRACT Topographic features, stratification, and barotropic tidal currents are three factors that determine internal tide (IT) generation. However, the mechanism of the impacts of stratification variation on IT generation in Luzon Strait (LS) has not been extensively explored. A three-dimensional high-resolution model is used to simulate the M2 ITs in the northern South China Sea (SCS) under different stratification conditions. The model is run with idealized topographies where the east or west ridge of LS is removed. Results indicate that both the M2 conversion rate and energy fluxes in the northern SCS show seasonal variations that are site dependent. By analyzing all the results from the simulations, we find that stratification variation changes IT generation in LS mainly through two mechanisms. First, the impact of stratification variation on the bottom pressure perturbation is caused by barotropic tidal currents flowing over topographic features, which directly affects the conversion. Second, stratification variation changes the wavelength of ITs and, hence, the interference of ITs within the double ridges, which finally changes the conversion in LS. The second mechanism is found to be the dominant one for seasonal variation of the M2 IT generation in LS.","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":"58 1","pages":"206 - 218"},"PeriodicalIF":1.6000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07055900.2020.1767534","citationCount":"6","resultStr":"{\"title\":\"Impacts of Stratification Variation on the M2 Internal Tide Generation in Luzon Strait\",\"authors\":\"Zheng Guo, A. Cao, Xianqing Lv, Jinbao Song\",\"doi\":\"10.1080/07055900.2020.1767534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Topographic features, stratification, and barotropic tidal currents are three factors that determine internal tide (IT) generation. However, the mechanism of the impacts of stratification variation on IT generation in Luzon Strait (LS) has not been extensively explored. A three-dimensional high-resolution model is used to simulate the M2 ITs in the northern South China Sea (SCS) under different stratification conditions. The model is run with idealized topographies where the east or west ridge of LS is removed. Results indicate that both the M2 conversion rate and energy fluxes in the northern SCS show seasonal variations that are site dependent. By analyzing all the results from the simulations, we find that stratification variation changes IT generation in LS mainly through two mechanisms. First, the impact of stratification variation on the bottom pressure perturbation is caused by barotropic tidal currents flowing over topographic features, which directly affects the conversion. Second, stratification variation changes the wavelength of ITs and, hence, the interference of ITs within the double ridges, which finally changes the conversion in LS. The second mechanism is found to be the dominant one for seasonal variation of the M2 IT generation in LS.\",\"PeriodicalId\":55434,\"journal\":{\"name\":\"Atmosphere-Ocean\",\"volume\":\"58 1\",\"pages\":\"206 - 218\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07055900.2020.1767534\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere-Ocean\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/07055900.2020.1767534\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2020.1767534","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impacts of Stratification Variation on the M2 Internal Tide Generation in Luzon Strait
ABSTRACT Topographic features, stratification, and barotropic tidal currents are three factors that determine internal tide (IT) generation. However, the mechanism of the impacts of stratification variation on IT generation in Luzon Strait (LS) has not been extensively explored. A three-dimensional high-resolution model is used to simulate the M2 ITs in the northern South China Sea (SCS) under different stratification conditions. The model is run with idealized topographies where the east or west ridge of LS is removed. Results indicate that both the M2 conversion rate and energy fluxes in the northern SCS show seasonal variations that are site dependent. By analyzing all the results from the simulations, we find that stratification variation changes IT generation in LS mainly through two mechanisms. First, the impact of stratification variation on the bottom pressure perturbation is caused by barotropic tidal currents flowing over topographic features, which directly affects the conversion. Second, stratification variation changes the wavelength of ITs and, hence, the interference of ITs within the double ridges, which finally changes the conversion in LS. The second mechanism is found to be the dominant one for seasonal variation of the M2 IT generation in LS.
期刊介绍:
Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed:
climate and climatology;
observation technology, remote sensing;
forecasting, modelling, numerical methods;
physics, dynamics, chemistry, biogeochemistry;
boundary layers, pollution, aerosols;
circulation, cloud physics, hydrology, air-sea interactions;
waves, ice, energy exchange and related environmental topics.