{"title":"复曲面流形上的一致K稳定性和保形Kähler,Einstein-Maxwell几何","authors":"Yaxiong Liu","doi":"10.2748/tmj.20201006","DOIUrl":null,"url":null,"abstract":"Conformally Kahler, Einstein-Maxwell metrics and $f$-extremal metrics are generalization of canonical metrics in Kahler geometry. We introduce uniform K-stability for toric Kahler manifolds, and show that uniform K-stability is necessary condition for the existence of $f$-extremal metrics on toric manifolds. Furthermore, we show that uniform K-stability is equivalent to properness of relative K-energy.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform K-stability and Conformally Kähler, Einstein-Maxwell geometry on toric manifolds\",\"authors\":\"Yaxiong Liu\",\"doi\":\"10.2748/tmj.20201006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conformally Kahler, Einstein-Maxwell metrics and $f$-extremal metrics are generalization of canonical metrics in Kahler geometry. We introduce uniform K-stability for toric Kahler manifolds, and show that uniform K-stability is necessary condition for the existence of $f$-extremal metrics on toric manifolds. Furthermore, we show that uniform K-stability is equivalent to properness of relative K-energy.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20201006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20201006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniform K-stability and Conformally Kähler, Einstein-Maxwell geometry on toric manifolds
Conformally Kahler, Einstein-Maxwell metrics and $f$-extremal metrics are generalization of canonical metrics in Kahler geometry. We introduce uniform K-stability for toric Kahler manifolds, and show that uniform K-stability is necessary condition for the existence of $f$-extremal metrics on toric manifolds. Furthermore, we show that uniform K-stability is equivalent to properness of relative K-energy.