参数对钢筋混凝土建筑抗弯机理的影响

IF 0.8 Q4 ENGINEERING, CIVIL
Z. Najem, Thaer Alrudaini
{"title":"参数对钢筋混凝土建筑抗弯机理的影响","authors":"Z. Najem, Thaer Alrudaini","doi":"10.56748/ejse.234403","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of spans length, reinforcement ratio and continuity of flexural reinforcement on the progressive collapse performance of double span beams over failed columns. The investigations focus on initial flexural resisting mechanism to prevent the progressive collapse. Detailed nonlinear finite element simulation of double span beam-column sub-assemblages subjected to residual gravity loads that initially carried by the failed column is adopted for the investigations. Nonlinear static pushover analysis is conducted in which capacity curves are derived and compared with demanded capacities. The effect of spans length, reinforcement ratio and number of continuous bottom flexural reinforcement on progressive collapse are considered in the investigations. Analysis results show that the strength to resist progressive collapse has decreased by 25.4 % and the ductility increased by 103 % following the increasing in span length from 5 m to 7 m. On the other hand, increasing reinforcement ratio of top flexural reinforcement from 0.447 to 1.089 leads to 26.27 % increasing in strength accompanied with a decrease in ductility equal to 16.42 %. In addition, extending all bottom bars rather than the minimum specified two bars resulted in 12 % increasing in strength and 40.28 % decreasing in ductility.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters Affect Flexural Mechanism to Prevent Progressive Collapse of RC Buildings\",\"authors\":\"Z. Najem, Thaer Alrudaini\",\"doi\":\"10.56748/ejse.234403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effect of spans length, reinforcement ratio and continuity of flexural reinforcement on the progressive collapse performance of double span beams over failed columns. The investigations focus on initial flexural resisting mechanism to prevent the progressive collapse. Detailed nonlinear finite element simulation of double span beam-column sub-assemblages subjected to residual gravity loads that initially carried by the failed column is adopted for the investigations. Nonlinear static pushover analysis is conducted in which capacity curves are derived and compared with demanded capacities. The effect of spans length, reinforcement ratio and number of continuous bottom flexural reinforcement on progressive collapse are considered in the investigations. Analysis results show that the strength to resist progressive collapse has decreased by 25.4 % and the ductility increased by 103 % following the increasing in span length from 5 m to 7 m. On the other hand, increasing reinforcement ratio of top flexural reinforcement from 0.447 to 1.089 leads to 26.27 % increasing in strength accompanied with a decrease in ductility equal to 16.42 %. In addition, extending all bottom bars rather than the minimum specified two bars resulted in 12 % increasing in strength and 40.28 % decreasing in ductility.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.234403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.234403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

研究了跨长、配筋率和受弯钢筋连续性对双跨梁在破坏柱上渐进倒塌性能的影响。研究的重点是防止渐进坍塌的初始抗弯机制。采用详细的非线性有限元模拟方法,对双跨梁柱子组合在失效柱初始承载的残余重力荷载作用下进行了研究。进行了非线性静态推倒分析,推导了容量曲线,并与要求容量进行了比较。研究中考虑了跨度长度、配筋率和底部连续受弯钢筋数量对渐进倒塌的影响。分析结果表明,随着跨度从5m增加到7m,抗渐进倒塌的强度降低了25.4%,延性提高了103%。另一方面,顶部受弯钢筋的配筋率从0.447增加到1.089,强度增加了26.27%,延性降低了16.42%。此外,延伸所有底部钢筋,而不是指定的最小两根钢筋,导致强度增加12%,延性降低40.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameters Affect Flexural Mechanism to Prevent Progressive Collapse of RC Buildings
This study investigates the effect of spans length, reinforcement ratio and continuity of flexural reinforcement on the progressive collapse performance of double span beams over failed columns. The investigations focus on initial flexural resisting mechanism to prevent the progressive collapse. Detailed nonlinear finite element simulation of double span beam-column sub-assemblages subjected to residual gravity loads that initially carried by the failed column is adopted for the investigations. Nonlinear static pushover analysis is conducted in which capacity curves are derived and compared with demanded capacities. The effect of spans length, reinforcement ratio and number of continuous bottom flexural reinforcement on progressive collapse are considered in the investigations. Analysis results show that the strength to resist progressive collapse has decreased by 25.4 % and the ductility increased by 103 % following the increasing in span length from 5 m to 7 m. On the other hand, increasing reinforcement ratio of top flexural reinforcement from 0.447 to 1.089 leads to 26.27 % increasing in strength accompanied with a decrease in ductility equal to 16.42 %. In addition, extending all bottom bars rather than the minimum specified two bars resulted in 12 % increasing in strength and 40.28 % decreasing in ductility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信