到强同伦的扭曲结构和态射

Pub Date : 2019-11-08 DOI:10.1007/s40062-019-00249-w
Kathryn Hess, Paul-Eugène Parent, Jonathan Scott
{"title":"到强同伦的扭曲结构和态射","authors":"Kathryn Hess,&nbsp;Paul-Eugène Parent,&nbsp;Jonathan Scott","doi":"10.1007/s40062-019-00249-w","DOIUrl":null,"url":null,"abstract":"<p>We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads <img>, which is exactly the two-sided Koszul resolution of the associative operad <img>, also known as the Alexander-Whitney co-ring.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00249-w","citationCount":"0","resultStr":"{\"title\":\"Twisting structures and morphisms up to strong homotopy\",\"authors\":\"Kathryn Hess,&nbsp;Paul-Eugène Parent,&nbsp;Jonathan Scott\",\"doi\":\"10.1007/s40062-019-00249-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads <img>, which is exactly the two-sided Koszul resolution of the associative operad <img>, also known as the Alexander-Whitney co-ring.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00249-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00249-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00249-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对对称序列的态射分类来定义对称序列的扭曲复合积,而不是通过对扭曲协链的分类来定义对称序列的扭曲复合积。我们的方法允许我们建立一个同时推广经典代数和余代数的附加,以及二次操作数的条形-条形附加。在一些情况下,与这个连词相关的共同语是一个标准的Koszul结构。相关的Kleisli范畴是“强同伦”态射范畴。在附录中,我们研究了与合作算子正则态射相关的共环,它正是结合算子的双面Koszul解析,也称为Alexander-Whitney共环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Twisting structures and morphisms up to strong homotopy

分享
查看原文
Twisting structures and morphisms up to strong homotopy

We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads , which is exactly the two-sided Koszul resolution of the associative operad , also known as the Alexander-Whitney co-ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信