A. Muthusamy, Shashikala Tantry, M. R. RADHAKRISHNA RAO, K. Satyamoorthy
{"title":"茄子(Solanum melongena L.) var. Mattu Gulla的高效体细胞胚胎发生和植株再生","authors":"A. Muthusamy, Shashikala Tantry, M. R. RADHAKRISHNA RAO, K. Satyamoorthy","doi":"10.1080/15427528.2022.2148312","DOIUrl":null,"url":null,"abstract":"ABSTRACT The organogenesis protocol was established for a unique brinjal (Solanum melongena L.) variety, “Mattu Gulla”, which has a distinct size, color and flavor. The objective of this study was to develop a reliable and efficient protocol for the initiation and maturation of somatic embryos into plantlets. The explants were cultured on Murashige and Skoog medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D) (1.0 mg/L) and benzyl aminopurine (BAP) (1.5 mg/L) for callus initiation. The developing calli (45-days old) were transferred onto an MS medium augmented with plant growth regulators to determine the embryogenic potential of the explants. The proportion of embryogenic callus was higher in hypocotyl-derived calli (HC) with indole butyric acid (IBA) (1.5 mg/L) and BAP (1.0 mg/L with 2,4-D and thidiazuron (TDZ) (1.0 mg/L) than in cotyledon and leaf-derived calli. The embryo initiation was recorded on the 23rd day after subculture from HC with the 2,4-D and TDZ (1.0 mg/L) combination, and germination was recorded. The somatic embryos developed from cotyledon-derived calli showed the highest number of plantlets and a significant percentage of ex vitro survival. In contrast, the lowest number of plantlets was noted from the embryos of hypocotyl-derived calli and ex vitro survival of plantlets. Under greenhouse conditions, the acclimatized plantlets thrived and produced fruits with viable seeds. The established protocol in this study should serve as a platform for large-scale somatic embryogenesis and micropropagation of plantlets. The somatic embryo-based manipulation should be exploited as a biotechnological tool in crop breeding and improving desired agronomic traits.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"37 1","pages":"735 - 750"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency somatic embryogenesis and plant regeneration in brinjal (Solanum melongena L.) var. Mattu Gulla\",\"authors\":\"A. Muthusamy, Shashikala Tantry, M. R. RADHAKRISHNA RAO, K. Satyamoorthy\",\"doi\":\"10.1080/15427528.2022.2148312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The organogenesis protocol was established for a unique brinjal (Solanum melongena L.) variety, “Mattu Gulla”, which has a distinct size, color and flavor. The objective of this study was to develop a reliable and efficient protocol for the initiation and maturation of somatic embryos into plantlets. The explants were cultured on Murashige and Skoog medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D) (1.0 mg/L) and benzyl aminopurine (BAP) (1.5 mg/L) for callus initiation. The developing calli (45-days old) were transferred onto an MS medium augmented with plant growth regulators to determine the embryogenic potential of the explants. The proportion of embryogenic callus was higher in hypocotyl-derived calli (HC) with indole butyric acid (IBA) (1.5 mg/L) and BAP (1.0 mg/L with 2,4-D and thidiazuron (TDZ) (1.0 mg/L) than in cotyledon and leaf-derived calli. The embryo initiation was recorded on the 23rd day after subculture from HC with the 2,4-D and TDZ (1.0 mg/L) combination, and germination was recorded. The somatic embryos developed from cotyledon-derived calli showed the highest number of plantlets and a significant percentage of ex vitro survival. In contrast, the lowest number of plantlets was noted from the embryos of hypocotyl-derived calli and ex vitro survival of plantlets. Under greenhouse conditions, the acclimatized plantlets thrived and produced fruits with viable seeds. The established protocol in this study should serve as a platform for large-scale somatic embryogenesis and micropropagation of plantlets. The somatic embryo-based manipulation should be exploited as a biotechnological tool in crop breeding and improving desired agronomic traits.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"37 1\",\"pages\":\"735 - 750\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2022.2148312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2022.2148312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
High-efficiency somatic embryogenesis and plant regeneration in brinjal (Solanum melongena L.) var. Mattu Gulla
ABSTRACT The organogenesis protocol was established for a unique brinjal (Solanum melongena L.) variety, “Mattu Gulla”, which has a distinct size, color and flavor. The objective of this study was to develop a reliable and efficient protocol for the initiation and maturation of somatic embryos into plantlets. The explants were cultured on Murashige and Skoog medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D) (1.0 mg/L) and benzyl aminopurine (BAP) (1.5 mg/L) for callus initiation. The developing calli (45-days old) were transferred onto an MS medium augmented with plant growth regulators to determine the embryogenic potential of the explants. The proportion of embryogenic callus was higher in hypocotyl-derived calli (HC) with indole butyric acid (IBA) (1.5 mg/L) and BAP (1.0 mg/L with 2,4-D and thidiazuron (TDZ) (1.0 mg/L) than in cotyledon and leaf-derived calli. The embryo initiation was recorded on the 23rd day after subculture from HC with the 2,4-D and TDZ (1.0 mg/L) combination, and germination was recorded. The somatic embryos developed from cotyledon-derived calli showed the highest number of plantlets and a significant percentage of ex vitro survival. In contrast, the lowest number of plantlets was noted from the embryos of hypocotyl-derived calli and ex vitro survival of plantlets. Under greenhouse conditions, the acclimatized plantlets thrived and produced fruits with viable seeds. The established protocol in this study should serve as a platform for large-scale somatic embryogenesis and micropropagation of plantlets. The somatic embryo-based manipulation should be exploited as a biotechnological tool in crop breeding and improving desired agronomic traits.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.