{"title":"基于切片、标记化和加密的组合方法,利用TF-Sec模型保护云中的静态数据","authors":"N. Keerthana, Viji Vinod, Sudhakar Sengan","doi":"10.1166/JCTN.2020.9421","DOIUrl":null,"url":null,"abstract":"Data in the Cloud, which applies to data as a cloud service provider (CSP), transmits stores, or manages it. The company will enforce the same definition of data usage while the data is resident within the enterprise and thus extend the required cryptographic security criteria to data\n collected, exchanged, or handled by CSP. The CSP Service Level Agreements cannot override the cryptographic access measures. When the data is transferred securely to CSP, it can be securely collected, distributed, and interpreted. Data at the rest position applies to data as it is processed\n internally in organized and in the unstructured ways like databases and file cabinets. The Data at the Rest example includes the use of cryptography for preserving the integrity of valuable data when processed. For cloud services, computing takes multiple forms from recording units, repositories,\n and many unstructured items. This paper presents a secure model for Data at rest. The TF-Sec model suggested is planned for use with Slicing, Tokenization, and Encryption. The model encrypts the given cloud data using AES 256 encryption, and then the encrypted block is sliced into the chunks\n of data fragments using HD-Slicer. Then it applies tokenization algorithm TKNZ to each chunk of data, applies erasure coding technique to tokens, applies the data dispersion technique to scramble encrypted data fragments, and allocates to storage nodes of the multiple CSP. In taking the above\n steps, this study aims to resolve the cloud security problems found and to guarantee the confidentiality of their data to cloud users due to encryption of data fragments would be of little benefit to a CSP.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"17 1","pages":"5296-5306"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slicing, Tokenization, and Encryption Based Combinational Approach to Protect Data-at-Rest in Cloud Using TF-Sec Model\",\"authors\":\"N. Keerthana, Viji Vinod, Sudhakar Sengan\",\"doi\":\"10.1166/JCTN.2020.9421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data in the Cloud, which applies to data as a cloud service provider (CSP), transmits stores, or manages it. The company will enforce the same definition of data usage while the data is resident within the enterprise and thus extend the required cryptographic security criteria to data\\n collected, exchanged, or handled by CSP. The CSP Service Level Agreements cannot override the cryptographic access measures. When the data is transferred securely to CSP, it can be securely collected, distributed, and interpreted. Data at the rest position applies to data as it is processed\\n internally in organized and in the unstructured ways like databases and file cabinets. The Data at the Rest example includes the use of cryptography for preserving the integrity of valuable data when processed. For cloud services, computing takes multiple forms from recording units, repositories,\\n and many unstructured items. This paper presents a secure model for Data at rest. The TF-Sec model suggested is planned for use with Slicing, Tokenization, and Encryption. The model encrypts the given cloud data using AES 256 encryption, and then the encrypted block is sliced into the chunks\\n of data fragments using HD-Slicer. Then it applies tokenization algorithm TKNZ to each chunk of data, applies erasure coding technique to tokens, applies the data dispersion technique to scramble encrypted data fragments, and allocates to storage nodes of the multiple CSP. In taking the above\\n steps, this study aims to resolve the cloud security problems found and to guarantee the confidentiality of their data to cloud users due to encryption of data fragments would be of little benefit to a CSP.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"17 1\",\"pages\":\"5296-5306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2020.9421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2020.9421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Slicing, Tokenization, and Encryption Based Combinational Approach to Protect Data-at-Rest in Cloud Using TF-Sec Model
Data in the Cloud, which applies to data as a cloud service provider (CSP), transmits stores, or manages it. The company will enforce the same definition of data usage while the data is resident within the enterprise and thus extend the required cryptographic security criteria to data
collected, exchanged, or handled by CSP. The CSP Service Level Agreements cannot override the cryptographic access measures. When the data is transferred securely to CSP, it can be securely collected, distributed, and interpreted. Data at the rest position applies to data as it is processed
internally in organized and in the unstructured ways like databases and file cabinets. The Data at the Rest example includes the use of cryptography for preserving the integrity of valuable data when processed. For cloud services, computing takes multiple forms from recording units, repositories,
and many unstructured items. This paper presents a secure model for Data at rest. The TF-Sec model suggested is planned for use with Slicing, Tokenization, and Encryption. The model encrypts the given cloud data using AES 256 encryption, and then the encrypted block is sliced into the chunks
of data fragments using HD-Slicer. Then it applies tokenization algorithm TKNZ to each chunk of data, applies erasure coding technique to tokens, applies the data dispersion technique to scramble encrypted data fragments, and allocates to storage nodes of the multiple CSP. In taking the above
steps, this study aims to resolve the cloud security problems found and to guarantee the confidentiality of their data to cloud users due to encryption of data fragments would be of little benefit to a CSP.