关于移位多项式的Bruck猜想的一个结果

IF 0.5 Q3 MATHEMATICS
B. Rao, Shilpa N.
{"title":"关于移位多项式的Bruck猜想的一个结果","authors":"B. Rao, Shilpa N.","doi":"10.21494/iste.op.2022.0839","DOIUrl":null,"url":null,"abstract":"This paper mainly concerns about establishing the Bruck conjecture for differential-difference polynomial generated by an entire function. The polynomial considered is of finite order and involves the entire function f(z) and its shift f(z + c) where c ∈ C. Suitable examples are given to prove the sharpness of sharing exceptional values of Borel and Nevanlinna. 2020 Mathematics Subject Classification. 30D35","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A result on Bruck Conjecture related to Shift Polynomials\",\"authors\":\"B. Rao, Shilpa N.\",\"doi\":\"10.21494/iste.op.2022.0839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper mainly concerns about establishing the Bruck conjecture for differential-difference polynomial generated by an entire function. The polynomial considered is of finite order and involves the entire function f(z) and its shift f(z + c) where c ∈ C. Suitable examples are given to prove the sharpness of sharing exceptional values of Borel and Nevanlinna. 2020 Mathematics Subject Classification. 30D35\",\"PeriodicalId\":43512,\"journal\":{\"name\":\"Advances in Pure and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2022.0839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2022.0839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要讨论由一个整体函数生成的微分差分多项式的Bruck猜想的建立。所考虑的多项式是有限阶的,涉及整个函数f(z)及其移位f(z+c),其中c∈c。给出了合适的例子来证明共享Borel和Nevanlinna的异常值的尖锐性。2020数学学科分类。30D35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A result on Bruck Conjecture related to Shift Polynomials
This paper mainly concerns about establishing the Bruck conjecture for differential-difference polynomial generated by an entire function. The polynomial considered is of finite order and involves the entire function f(z) and its shift f(z + c) where c ∈ C. Suitable examples are given to prove the sharpness of sharing exceptional values of Borel and Nevanlinna. 2020 Mathematics Subject Classification. 30D35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信