位移下的c -辛几何

IF 0.4 Q4 MATHEMATICS
S. Tchuiaga
{"title":"位移下的c -辛几何","authors":"S. Tchuiaga","doi":"10.1080/1726037X.2018.1551717","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper continues the study of the group Hameo(M, ω), of all Hamiltonian homeomorphisms of a closed symplectic manifold (M, ω). After given a direct proof of the positivity result of the symplectic displacement energy, we show that the uniqueness theorem of generators of strong symplectic isotopies extends to any closed symplectic manifold: An explicit formula for the mass flow of any strong symplectic isotopy with respect to its generator is given. We show that Hameo(M, ω) inherits under the C0 -Hamiltonian topology, the fragmentation property, the algebraic perfectness, and coincides with the commutator sub-group of the group of all strong symplectic homeomorphisms. This solves a Banyaga's conjecture, and some other conjectures are also formulated.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"109 - 129"},"PeriodicalIF":0.4000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2018.1551717","citationCount":"0","resultStr":"{\"title\":\"C0–Symplectic Geometry Under Displacements\",\"authors\":\"S. Tchuiaga\",\"doi\":\"10.1080/1726037X.2018.1551717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper continues the study of the group Hameo(M, ω), of all Hamiltonian homeomorphisms of a closed symplectic manifold (M, ω). After given a direct proof of the positivity result of the symplectic displacement energy, we show that the uniqueness theorem of generators of strong symplectic isotopies extends to any closed symplectic manifold: An explicit formula for the mass flow of any strong symplectic isotopy with respect to its generator is given. We show that Hameo(M, ω) inherits under the C0 -Hamiltonian topology, the fragmentation property, the algebraic perfectness, and coincides with the commutator sub-group of the group of all strong symplectic homeomorphisms. This solves a Banyaga's conjecture, and some other conjectures are also formulated.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"17 1\",\"pages\":\"109 - 129\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2018.1551717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2018.1551717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2018.1551717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文继续研究闭辛流形(M,ω)的所有哈密顿同胚的群Hameo(M,Ω)。在给出辛位移能的正结果的直接证明后,我们证明了强辛各向同性生成元的唯一性定理推广到任何闭辛流形:给出了任何强辛各向异性关于其生成元的质量流的显式公式。我们证明了Hameo(M,ω)在C0-Hamiltonian拓扑下继承了分片性、代数完全性,并且与所有强辛同胚群的交换子群一致。这解决了Banyaga的一个猜想,并提出了其他一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C0–Symplectic Geometry Under Displacements
ABSTRACT This paper continues the study of the group Hameo(M, ω), of all Hamiltonian homeomorphisms of a closed symplectic manifold (M, ω). After given a direct proof of the positivity result of the symplectic displacement energy, we show that the uniqueness theorem of generators of strong symplectic isotopies extends to any closed symplectic manifold: An explicit formula for the mass flow of any strong symplectic isotopy with respect to its generator is given. We show that Hameo(M, ω) inherits under the C0 -Hamiltonian topology, the fragmentation property, the algebraic perfectness, and coincides with the commutator sub-group of the group of all strong symplectic homeomorphisms. This solves a Banyaga's conjecture, and some other conjectures are also formulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信