{"title":"众包随机最后一英里配送的深度强化学习","authors":"Marco Silva , João Pedro Pedroso , Ana Viana","doi":"10.1016/j.ejtl.2023.100105","DOIUrl":null,"url":null,"abstract":"<div><p>We study a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries but may also use the services of occasional drivers (ODs) willing to make deliveries using their own vehicles in return for a small fee. Under such a business model, a.k.a crowdshipping, the company seeks to make all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles plus the compensation paid to the ODs.</p><p>We consider a stochastic and dynamic last-mile delivery environment in which customer delivery orders, as well as ODs available for deliveries, arrive randomly throughout the day, within fixed time windows.</p><p>We present a novel deep reinforcement learning (DRL) approach to the problem that can deal with large problem instances. We formulate the action selection problem as a mixed-integer optimization program.</p><p>The DRL approach is compared against other optimization under uncertainty approaches, namely, sample-average approximation (SAA) and distributionally robust optimization (DRO). The results show the effectiveness of the DRL approach by examining out-of-sample performance.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep reinforcement learning for stochastic last-mile delivery with crowdshipping\",\"authors\":\"Marco Silva , João Pedro Pedroso , Ana Viana\",\"doi\":\"10.1016/j.ejtl.2023.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries but may also use the services of occasional drivers (ODs) willing to make deliveries using their own vehicles in return for a small fee. Under such a business model, a.k.a crowdshipping, the company seeks to make all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles plus the compensation paid to the ODs.</p><p>We consider a stochastic and dynamic last-mile delivery environment in which customer delivery orders, as well as ODs available for deliveries, arrive randomly throughout the day, within fixed time windows.</p><p>We present a novel deep reinforcement learning (DRL) approach to the problem that can deal with large problem instances. We formulate the action selection problem as a mixed-integer optimization program.</p><p>The DRL approach is compared against other optimization under uncertainty approaches, namely, sample-average approximation (SAA) and distributionally robust optimization (DRO). The results show the effectiveness of the DRL approach by examining out-of-sample performance.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S219243762300002X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219243762300002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Deep reinforcement learning for stochastic last-mile delivery with crowdshipping
We study a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries but may also use the services of occasional drivers (ODs) willing to make deliveries using their own vehicles in return for a small fee. Under such a business model, a.k.a crowdshipping, the company seeks to make all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles plus the compensation paid to the ODs.
We consider a stochastic and dynamic last-mile delivery environment in which customer delivery orders, as well as ODs available for deliveries, arrive randomly throughout the day, within fixed time windows.
We present a novel deep reinforcement learning (DRL) approach to the problem that can deal with large problem instances. We formulate the action selection problem as a mixed-integer optimization program.
The DRL approach is compared against other optimization under uncertainty approaches, namely, sample-average approximation (SAA) and distributionally robust optimization (DRO). The results show the effectiveness of the DRL approach by examining out-of-sample performance.
期刊介绍:
The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.