用相关数据预测分层时间序列的个体和组合方法:一项实证研究

IF 3.6 2区 管理学 Q2 BUSINESS
H. Rehman, Guohua Wan, A. Ullah, Badiea Shaukat
{"title":"用相关数据预测分层时间序列的个体和组合方法:一项实证研究","authors":"H. Rehman, Guohua Wan, A. Ullah, Badiea Shaukat","doi":"10.1080/23270012.2019.1629342","DOIUrl":null,"url":null,"abstract":"Hierarchical time series arise in manufacturing and service industries when the products or services have the hierarchical structure, and top-down and bottom-up methods are commonly used to forecas...","PeriodicalId":46290,"journal":{"name":"Journal of Management Analytics","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23270012.2019.1629342","citationCount":"4","resultStr":"{\"title\":\"Individual and combination approaches to forecasting hierarchical time series with correlated data: an empirical study\",\"authors\":\"H. Rehman, Guohua Wan, A. Ullah, Badiea Shaukat\",\"doi\":\"10.1080/23270012.2019.1629342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical time series arise in manufacturing and service industries when the products or services have the hierarchical structure, and top-down and bottom-up methods are commonly used to forecas...\",\"PeriodicalId\":46290,\"journal\":{\"name\":\"Journal of Management Analytics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2019-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23270012.2019.1629342\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Analytics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1080/23270012.2019.1629342\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Analytics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/23270012.2019.1629342","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 4

摘要

当产品或服务具有层次结构时,制造业和服务业就会出现层次时间序列,通常使用自上而下和自下而上的方法来预测产品或服务的层次结构。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individual and combination approaches to forecasting hierarchical time series with correlated data: an empirical study
Hierarchical time series arise in manufacturing and service industries when the products or services have the hierarchical structure, and top-down and bottom-up methods are commonly used to forecas...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Management Analytics
Journal of Management Analytics SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
13.30
自引率
3.40%
发文量
14
期刊介绍: The Journal of Management Analytics (JMA) is dedicated to advancing the theory and application of data analytics in traditional business fields. It focuses on the intersection of data analytics with key disciplines such as accounting, finance, management, marketing, production/operations management, and supply chain management. JMA is particularly interested in research that explores the interface between data analytics and these business areas. The journal welcomes studies employing a range of research methods, including empirical research, big data analytics, data science, operations research, management science, decision science, and simulation modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信