{"title":"一类长度为2^n的循环码的权值分布","authors":"Manjit Singh, Sudhir Batra","doi":"10.13069/JACODESMATH.505364","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{F}_q$ be a finite field with $q$ elements and $n$ be a positive integer. In this paper, we determine the weight distribution of a class cyclic codes of length $2^n$ over $\\mathbb{F}_q$ whose parity check polynomials are either binomials or trinomials with $2^l$ zeros over $\\mathbb{F}_q$, where integer $l\\ge 1$. In addition, constant weight and two-weight linear codes are constructed when $q\\equiv3\\pmod 4$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight distribution of a class of cyclic codes of length $2^n$\",\"authors\":\"Manjit Singh, Sudhir Batra\",\"doi\":\"10.13069/JACODESMATH.505364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{F}_q$ be a finite field with $q$ elements and $n$ be a positive integer. In this paper, we determine the weight distribution of a class cyclic codes of length $2^n$ over $\\\\mathbb{F}_q$ whose parity check polynomials are either binomials or trinomials with $2^l$ zeros over $\\\\mathbb{F}_q$, where integer $l\\\\ge 1$. In addition, constant weight and two-weight linear codes are constructed when $q\\\\equiv3\\\\pmod 4$.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.505364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.505364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Weight distribution of a class of cyclic codes of length $2^n$
Let $\mathbb{F}_q$ be a finite field with $q$ elements and $n$ be a positive integer. In this paper, we determine the weight distribution of a class cyclic codes of length $2^n$ over $\mathbb{F}_q$ whose parity check polynomials are either binomials or trinomials with $2^l$ zeros over $\mathbb{F}_q$, where integer $l\ge 1$. In addition, constant weight and two-weight linear codes are constructed when $q\equiv3\pmod 4$.