群作用下移位映射的动力学性质

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Zhan-Huai Ji
{"title":"群作用下移位映射的动力学性质","authors":"Zhan-Huai Ji","doi":"10.1155/2022/5969042","DOIUrl":null,"url":null,"abstract":"<jats:p>Firstly, we introduced the concept of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property. Secondly, we studied their dynamical properties and topological structure and obtained the following conclusions: (1) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property; (2) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property; (3) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property. The above results make up for the lack of theory of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property in infinite product space under group action.</jats:p>","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Property of the Shift Map under Group Action\",\"authors\":\"Zhan-Huai Ji\",\"doi\":\"10.1155/2022/5969042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Firstly, we introduced the concept of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>periodic tracking property. Secondly, we studied their dynamical properties and topological structure and obtained the following conclusions: (1) let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> be compact metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>space and the metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>d</mi>\\n </math>\\n </jats:inline-formula> be invariant to <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>G</mi>\\n </math>\\n </jats:inline-formula>. Then, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>σ</mi>\\n </math>\\n </jats:inline-formula> has <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mover accent=\\\"true\\\">\\n <mi>G</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>asymptotic average tracking property; (2) let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> be compact metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>space and the metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>d</mi>\\n </math>\\n </jats:inline-formula> be invariant to <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>G</mi>\\n </math>\\n </jats:inline-formula>. Then, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>σ</mi>\\n </math>\\n </jats:inline-formula> has <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mover accent=\\\"true\\\">\\n <mi>G</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>Lipschitz tracking property; (3) let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> be compact metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>space and the metric <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>d</mi>\\n </math>\\n </jats:inline-formula> be invariant to <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <mi>G</mi>\\n </math>\\n </jats:inline-formula>. Then, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <mi>σ</mi>\\n </math>\\n </jats:inline-formula> has <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\">\\n <mover accent=\\\"true\\\">\\n <mi>G</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>periodic tracking property. The above results make up for the lack of theory of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M24\\\">\\n <mi>G</mi>\\n <mo>‐</mo>\\n </math>\\n </jats:inline-formula>periodic tracking property in infinite product space under group action.</jats:p>\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5969042\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/5969042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

首先,我们引入了G‐Lipschitz跟踪性质、G‐渐近平均跟踪性质的概念,和G周期跟踪特性。其次研究了它们的动力学性质和拓扑结构,得到以下结论:(1)设X,d是紧致度量G‐空间,并且度量d对G那么,σ具有G′‐渐近平均跟踪性质;(2) 设X,d是紧致度量G‐空间,并且度量d对G那么,σ具有G‐Lipschitz跟踪性质;(3) 设X,d是紧致度量G‐空间,并且度量d对G那么,σ具有G′-周期跟踪性质。上述结果弥补了G‐Lipschitz跟踪性质、G‐渐近平均跟踪性质、,以及群作用下无穷乘积空间中的G-周期跟踪性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Property of the Shift Map under Group Action
Firstly, we introduced the concept of G Lipschitz tracking property, G asymptotic average tracking property, and G periodic tracking property. Secondly, we studied their dynamical properties and topological structure and obtained the following conclusions: (1) let X , d be compact metric G space and the metric d be invariant to G . Then, σ has G ¯ asymptotic average tracking property; (2) let X , d be compact metric G space and the metric d be invariant to G . Then, σ has G ¯ Lipschitz tracking property; (3) let X , d be compact metric G space and the metric d be invariant to G . Then, σ has G ¯ periodic tracking property. The above results make up for the lack of theory of G Lipschitz tracking property, G asymptotic average tracking property, and G periodic tracking property in infinite product space under group action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信