信息几何中梯度流方程的Weyl几何方法

Pub Date : 2022-12-30 DOI:10.7546/jgsp-66-2023-59-70
T. Wada
{"title":"信息几何中梯度流方程的Weyl几何方法","authors":"T. Wada","doi":"10.7546/jgsp-66-2023-59-70","DOIUrl":null,"url":null,"abstract":"The gradient-flow equations with respect to the potential functions in information geometry are reconsidered from the perspective of the Weyl integrable geometry. The pre-geodesic equations associated with the gradient-flow equations are regarded as the general pre-geodesic equations in the Weyl integrable geometry.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weyl Geometric Approach to the Gradient-Flow Equations in Information Geometry\",\"authors\":\"T. Wada\",\"doi\":\"10.7546/jgsp-66-2023-59-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gradient-flow equations with respect to the potential functions in information geometry are reconsidered from the perspective of the Weyl integrable geometry. The pre-geodesic equations associated with the gradient-flow equations are regarded as the general pre-geodesic equations in the Weyl integrable geometry.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-66-2023-59-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-66-2023-59-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从Weyl可积几何的角度重新考虑了信息几何中关于势函数的梯度流方程。在Weyl可积几何中,与梯度流方程相关的前测地线方程被视为一般的前测地方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weyl Geometric Approach to the Gradient-Flow Equations in Information Geometry
The gradient-flow equations with respect to the potential functions in information geometry are reconsidered from the perspective of the Weyl integrable geometry. The pre-geodesic equations associated with the gradient-flow equations are regarded as the general pre-geodesic equations in the Weyl integrable geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信