Cristina Dominguez , Kristina Orehounig , Jan Carmeliet
{"title":"利用居住者行为和照明设备所有权的数据驱动特征估计东非农村家庭每小时照明负荷概况","authors":"Cristina Dominguez , Kristina Orehounig , Jan Carmeliet","doi":"10.1016/j.deveng.2021.100073","DOIUrl":null,"url":null,"abstract":"<div><p>To design energy access solutions for rural households in developing countries it is important to have an accurate estimation of what their electricity consumption is. Studies reveal that they mainly use electricity to meet their lighting needs, as they cannot afford high power-consuming appliances. However, the scarce data availability and modeling complexity are a challenge to compute correctly the load profiles without collecting data on-site. This paper presents a methodology that computes the hourly lighting load profiles of rural households in East Africa requiring a small amount of publicly available input data. Combining data from household surveys, climate, and satellite imagery, the methodology applies machine learning for determining occupant behavior patterns, and lamps ownership for indoor and outdoor usage. For this, an average prediction accuracy of 80% is reached. After applying lighting requirement functions, load profiles are generated and then validated using measured data from 13 households in Kenya. Results show that the methodology is able to compute the load profiles with an average normalized root mean squared error of 0.7%, which is less compared to existing simulation approaches using on-site data. To demonstrate a broad application, the monthly lighting consumption is computed and projected geospatially for households in Kenya.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"6 ","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352728521000154/pdfft?md5=a0992a6e5020f5e0480836321709f150&pid=1-s2.0-S2352728521000154-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Estimating hourly lighting load profiles of rural households in East Africa applying a data-driven characterization of occupant behavior and lighting devices ownership\",\"authors\":\"Cristina Dominguez , Kristina Orehounig , Jan Carmeliet\",\"doi\":\"10.1016/j.deveng.2021.100073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To design energy access solutions for rural households in developing countries it is important to have an accurate estimation of what their electricity consumption is. Studies reveal that they mainly use electricity to meet their lighting needs, as they cannot afford high power-consuming appliances. However, the scarce data availability and modeling complexity are a challenge to compute correctly the load profiles without collecting data on-site. This paper presents a methodology that computes the hourly lighting load profiles of rural households in East Africa requiring a small amount of publicly available input data. Combining data from household surveys, climate, and satellite imagery, the methodology applies machine learning for determining occupant behavior patterns, and lamps ownership for indoor and outdoor usage. For this, an average prediction accuracy of 80% is reached. After applying lighting requirement functions, load profiles are generated and then validated using measured data from 13 households in Kenya. Results show that the methodology is able to compute the load profiles with an average normalized root mean squared error of 0.7%, which is less compared to existing simulation approaches using on-site data. To demonstrate a broad application, the monthly lighting consumption is computed and projected geospatially for households in Kenya.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"6 \",\"pages\":\"Article 100073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352728521000154/pdfft?md5=a0992a6e5020f5e0480836321709f150&pid=1-s2.0-S2352728521000154-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728521000154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728521000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Estimating hourly lighting load profiles of rural households in East Africa applying a data-driven characterization of occupant behavior and lighting devices ownership
To design energy access solutions for rural households in developing countries it is important to have an accurate estimation of what their electricity consumption is. Studies reveal that they mainly use electricity to meet their lighting needs, as they cannot afford high power-consuming appliances. However, the scarce data availability and modeling complexity are a challenge to compute correctly the load profiles without collecting data on-site. This paper presents a methodology that computes the hourly lighting load profiles of rural households in East Africa requiring a small amount of publicly available input data. Combining data from household surveys, climate, and satellite imagery, the methodology applies machine learning for determining occupant behavior patterns, and lamps ownership for indoor and outdoor usage. For this, an average prediction accuracy of 80% is reached. After applying lighting requirement functions, load profiles are generated and then validated using measured data from 13 households in Kenya. Results show that the methodology is able to compute the load profiles with an average normalized root mean squared error of 0.7%, which is less compared to existing simulation approaches using on-site data. To demonstrate a broad application, the monthly lighting consumption is computed and projected geospatially for households in Kenya.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."