无叶扩压器离心压缩机扩压器失速的产生机理

IF 1.1 Q4 ENGINEERING, MECHANICAL
N. Fujisawa, K. Tajima, H. Miida, Y. Ohta
{"title":"无叶扩压器离心压缩机扩压器失速的产生机理","authors":"N. Fujisawa, K. Tajima, H. Miida, Y. Ohta","doi":"10.33737/gpps20-tc-59","DOIUrl":null,"url":null,"abstract":"The generation mechanism of a diffuser stall in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25-30 % of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generation Mechanism of Diffuser Stall in a Centrifugal Compressor with Vaneless Diffuser\",\"authors\":\"N. Fujisawa, K. Tajima, H. Miida, Y. Ohta\",\"doi\":\"10.33737/gpps20-tc-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation mechanism of a diffuser stall in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25-30 % of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/gpps20-tc-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

通过实验和计算分析,研究了无叶扩压器离心压缩机扩压器失速的产生机理。扩散器失速是随着质量流量的降低而产生的。扩散器失速单元以叶轮转速的25-30%旋转,在距截止点180°处观察到扩散器失速波动。扩散器失速波动幅度在截止点附近逐渐增加。根据CFD分析,扩压器出口处的质量流量波动显示出低质量流量区域,旋转速度约为叶轮转速的25%。它们开始于距离截止点180°处,并随着该区域接近截止点而发展。因此,可以通过CFD分析来模拟扩压器失速。首先,通过与边界分离和叶轮排放涡流的相互作用,扩压器失速室起源于距截止点180°处。然后,边界分离积累和诱导低速区进一步发展了扩压器失速室。低速区在扩压器通道跨度上形成堵塞。扩散器失速单元由于正流动角引起的边界分离而膨胀。最后,扩散器失速单元在通过截止时消失,因为发生了质量流恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation Mechanism of Diffuser Stall in a Centrifugal Compressor with Vaneless Diffuser
The generation mechanism of a diffuser stall in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25-30 % of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信