二流体taylor-couette流的界面行为

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED
L. Forbes, A. Bassom
{"title":"二流体taylor-couette流的界面行为","authors":"L. Forbes, A. Bassom","doi":"10.1093/QJMAM/HBX025","DOIUrl":null,"url":null,"abstract":"The flow of a system of two viscous fluids between two concentric counter-rotating cylinders is discussed. A simple theory is presented that describes the evolution of shape of the interface between the fluids when they have near equal densities and identical viscosities. This suggests that the interface is neutrally stable, but that after sufficient time there are nevertheless points on the profile at which the curvature becomes very large. As a consequence, the interface develops cusp-like portions in its profile. A novel spectral method is developed for this problem in which the interface is represented as a region of finite width and over which the density changes rapidly but smoothly. The results confirm the general predictions of the asymptotic theory for rotation in a horizontal plane but when the rotation occurs vertically additional features develop in the flow.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"71 1","pages":"79-97"},"PeriodicalIF":0.8000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBX025","citationCount":"5","resultStr":"{\"title\":\"Interfacial behaviour in two-fluid taylor-couette flow\",\"authors\":\"L. Forbes, A. Bassom\",\"doi\":\"10.1093/QJMAM/HBX025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow of a system of two viscous fluids between two concentric counter-rotating cylinders is discussed. A simple theory is presented that describes the evolution of shape of the interface between the fluids when they have near equal densities and identical viscosities. This suggests that the interface is neutrally stable, but that after sufficient time there are nevertheless points on the profile at which the curvature becomes very large. As a consequence, the interface develops cusp-like portions in its profile. A novel spectral method is developed for this problem in which the interface is represented as a region of finite width and over which the density changes rapidly but smoothly. The results confirm the general predictions of the asymptotic theory for rotation in a horizontal plane but when the rotation occurs vertically additional features develop in the flow.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"71 1\",\"pages\":\"79-97\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QJMAM/HBX025\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/QJMAM/HBX025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBX025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

讨论了两个粘性流体系统在两个同心反向旋转圆柱体之间的流动。提出了一个简单的理论,描述了当流体具有接近相等的密度和相同的粘度时,流体之间界面形状的演变。这表明界面是中性稳定的,但在足够的时间后,轮廓上仍有曲率变得非常大的点。因此,界面在其轮廓中形成尖端状部分。针对这个问题,提出了一种新的光谱方法,其中界面表示为有限宽度的区域,并且密度在该区域上快速而平滑地变化。结果证实了渐近理论对水平面内旋转的一般预测,但当旋转垂直发生时,流中会产生额外的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial behaviour in two-fluid taylor-couette flow
The flow of a system of two viscous fluids between two concentric counter-rotating cylinders is discussed. A simple theory is presented that describes the evolution of shape of the interface between the fluids when they have near equal densities and identical viscosities. This suggests that the interface is neutrally stable, but that after sufficient time there are nevertheless points on the profile at which the curvature becomes very large. As a consequence, the interface develops cusp-like portions in its profile. A novel spectral method is developed for this problem in which the interface is represented as a region of finite width and over which the density changes rapidly but smoothly. The results confirm the general predictions of the asymptotic theory for rotation in a horizontal plane but when the rotation occurs vertically additional features develop in the flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信