拉姆齐定理对,集合,和证明大小

IF 0.9 1区 数学 Q1 LOGIC
L. Kolodziejczyk, Tin Lok Wong, K. Yokoyama
{"title":"拉姆齐定理对,集合,和证明大小","authors":"L. Kolodziejczyk, Tin Lok Wong, K. Yokoyama","doi":"10.1142/s0219061323500071","DOIUrl":null,"url":null,"abstract":"We prove that any proof of a $\\forall \\Sigma^0_2$ sentence in the theory $\\mathrm{WKL}_0 + \\mathrm{RT}^2_2$ can be translated into a proof in $\\mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $\\mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $\\mathrm{RT}^2_2$ has non-elementary speedup over the weaker base theory $\\mathrm{RCA}^*_0$ for proofs of $\\Sigma_1$ sentences. \nWe also show that for $n \\ge 0$, proofs of $\\Pi_{n+2}$ sentences in $\\mathrm{B}\\Sigma_{n+1}+\\exp$ can be translated into proofs in $\\mathrm{I}\\Sigma_{n} + \\exp$ at polynomial cost. Moreover, the $\\Pi_{n+2}$-conservativity of $\\mathrm{B}\\Sigma_{n+1} + \\exp$ over $\\mathrm{I}\\Sigma_{n} + \\exp$ can be proved in $\\mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n \\ge 1$, this answers a question of Clote, Hajek, and Paris.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ramsey's theorem for pairs, collection, and proof size\",\"authors\":\"L. Kolodziejczyk, Tin Lok Wong, K. Yokoyama\",\"doi\":\"10.1142/s0219061323500071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any proof of a $\\\\forall \\\\Sigma^0_2$ sentence in the theory $\\\\mathrm{WKL}_0 + \\\\mathrm{RT}^2_2$ can be translated into a proof in $\\\\mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $\\\\mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $\\\\mathrm{RT}^2_2$ has non-elementary speedup over the weaker base theory $\\\\mathrm{RCA}^*_0$ for proofs of $\\\\Sigma_1$ sentences. \\nWe also show that for $n \\\\ge 0$, proofs of $\\\\Pi_{n+2}$ sentences in $\\\\mathrm{B}\\\\Sigma_{n+1}+\\\\exp$ can be translated into proofs in $\\\\mathrm{I}\\\\Sigma_{n} + \\\\exp$ at polynomial cost. Moreover, the $\\\\Pi_{n+2}$-conservativity of $\\\\mathrm{B}\\\\Sigma_{n+1} + \\\\exp$ over $\\\\mathrm{I}\\\\Sigma_{n} + \\\\exp$ can be proved in $\\\\mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n \\\\ge 1$, this answers a question of Clote, Hajek, and Paris.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061323500071\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061323500071","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了$\mathrm理论中$\ for all \ Sigma ^0_2$句子的任何证明{WKL}_0+\mathrm{RT}^2_2$可以转换为$\mathrm中的证明{RCA}_0以多项式大小增加为代价。事实上,$\mathrm中的证明{RCA}_0$可以通过多项式时间算法找到。另一方面,对于$\Sigma_1$句子的证明,$\mathrm{RT}^2_2$比较弱的基础理论$\mathrm{RCA}^*_0$具有非初等加速。我们还证明了对于$n\ge0$,$\mathrm{B}\Sigma\{n+1}+\exp$中的$\Pi_{n+2}$句子的证明可以以多项式代价转换为$\mathrm{I}\Sigma_{n}+\exp$中的证明。此外,$\mathrm{B}\Sigma\{n+1}+\exp$在$\mathrm{I}\Sigmon\{n}+\exp$上的$\Pi_{n+2}$守恒性可以在$\math rm{PV}$中得到证明,$\math rm{PV}$是一个与多项式时间计算相对应的有界算术片段。对于$n\ge 1$,这回答了Clote、Hajek和Paris的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey's theorem for pairs, collection, and proof size
We prove that any proof of a $\forall \Sigma^0_2$ sentence in the theory $\mathrm{WKL}_0 + \mathrm{RT}^2_2$ can be translated into a proof in $\mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $\mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $\mathrm{RT}^2_2$ has non-elementary speedup over the weaker base theory $\mathrm{RCA}^*_0$ for proofs of $\Sigma_1$ sentences. We also show that for $n \ge 0$, proofs of $\Pi_{n+2}$ sentences in $\mathrm{B}\Sigma_{n+1}+\exp$ can be translated into proofs in $\mathrm{I}\Sigma_{n} + \exp$ at polynomial cost. Moreover, the $\Pi_{n+2}$-conservativity of $\mathrm{B}\Sigma_{n+1} + \exp$ over $\mathrm{I}\Sigma_{n} + \exp$ can be proved in $\mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n \ge 1$, this answers a question of Clote, Hajek, and Paris.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信