{"title":"电子信息技术在基于大数据的信号处理中的应用探索","authors":"Li Liu","doi":"10.1515/comp-2022-0272","DOIUrl":null,"url":null,"abstract":"Abstract Mobile phones are the most commonly used electronic devices in people’s daily life. The image, voice, and other information in these devices need to be processed through signal transmission. The role of signal processing is to process the acquired information in a certain way to get the final result. In order to ensure that the whole processing program can work normally, it is necessary to implement good control to achieve the desired effect. However, with the continuous progress and development of science and technology, its requirements are becoming increasingly strict. The traditional signal processing method is unreliable, has poor real time, and has error-prone characteristics, which can no longer meet the accuracy requirements of current information acquisition equipment. Therefore, people begin to study more complex and precise information processing methods and apply these algorithms to various advanced electronic devices to achieve better results. From the perspective of big data, electronic information technology is generated and developed based on massive data processing. It not only has a strong storage function but also has strong computing power and a wide range of application scenarios. It has strong applicability in real life. In this article, the signal to be processed was divided into several wavelet components in different frequency ranges by empirical mode decomposition technology, and then the signal was denoised by combining three wavelet denoising methods to obtain noise data with good signal-to-noise ratio and high classification accuracy. Finally, the corresponding feature information was extracted according to the signal-receiving model to improve the system recognition rate. This article compared the traditional signal processing methods with the signal processing approaches from the perspective of electronic information technology. The results showed that the processing method had a high computing speed and could better solve the problem of detection performance degradation caused by interference. User satisfaction had also increased by 2.87%, which showed that signal processing based on big data and information processing technology had broad application prospects in communication systems. The core of open computer science is to build a unified, efficient, and scalable computing platform based on massive data processing and use signal processing and computer technology to manage and optimize the scheduling of information resources to better meet various business needs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration on the application of electronic information technology in signal processing based on big data\",\"authors\":\"Li Liu\",\"doi\":\"10.1515/comp-2022-0272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mobile phones are the most commonly used electronic devices in people’s daily life. The image, voice, and other information in these devices need to be processed through signal transmission. The role of signal processing is to process the acquired information in a certain way to get the final result. In order to ensure that the whole processing program can work normally, it is necessary to implement good control to achieve the desired effect. However, with the continuous progress and development of science and technology, its requirements are becoming increasingly strict. The traditional signal processing method is unreliable, has poor real time, and has error-prone characteristics, which can no longer meet the accuracy requirements of current information acquisition equipment. Therefore, people begin to study more complex and precise information processing methods and apply these algorithms to various advanced electronic devices to achieve better results. From the perspective of big data, electronic information technology is generated and developed based on massive data processing. It not only has a strong storage function but also has strong computing power and a wide range of application scenarios. It has strong applicability in real life. In this article, the signal to be processed was divided into several wavelet components in different frequency ranges by empirical mode decomposition technology, and then the signal was denoised by combining three wavelet denoising methods to obtain noise data with good signal-to-noise ratio and high classification accuracy. Finally, the corresponding feature information was extracted according to the signal-receiving model to improve the system recognition rate. This article compared the traditional signal processing methods with the signal processing approaches from the perspective of electronic information technology. The results showed that the processing method had a high computing speed and could better solve the problem of detection performance degradation caused by interference. User satisfaction had also increased by 2.87%, which showed that signal processing based on big data and information processing technology had broad application prospects in communication systems. The core of open computer science is to build a unified, efficient, and scalable computing platform based on massive data processing and use signal processing and computer technology to manage and optimize the scheduling of information resources to better meet various business needs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0272\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0272","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploration on the application of electronic information technology in signal processing based on big data
Abstract Mobile phones are the most commonly used electronic devices in people’s daily life. The image, voice, and other information in these devices need to be processed through signal transmission. The role of signal processing is to process the acquired information in a certain way to get the final result. In order to ensure that the whole processing program can work normally, it is necessary to implement good control to achieve the desired effect. However, with the continuous progress and development of science and technology, its requirements are becoming increasingly strict. The traditional signal processing method is unreliable, has poor real time, and has error-prone characteristics, which can no longer meet the accuracy requirements of current information acquisition equipment. Therefore, people begin to study more complex and precise information processing methods and apply these algorithms to various advanced electronic devices to achieve better results. From the perspective of big data, electronic information technology is generated and developed based on massive data processing. It not only has a strong storage function but also has strong computing power and a wide range of application scenarios. It has strong applicability in real life. In this article, the signal to be processed was divided into several wavelet components in different frequency ranges by empirical mode decomposition technology, and then the signal was denoised by combining three wavelet denoising methods to obtain noise data with good signal-to-noise ratio and high classification accuracy. Finally, the corresponding feature information was extracted according to the signal-receiving model to improve the system recognition rate. This article compared the traditional signal processing methods with the signal processing approaches from the perspective of electronic information technology. The results showed that the processing method had a high computing speed and could better solve the problem of detection performance degradation caused by interference. User satisfaction had also increased by 2.87%, which showed that signal processing based on big data and information processing technology had broad application prospects in communication systems. The core of open computer science is to build a unified, efficient, and scalable computing platform based on massive data processing and use signal processing and computer technology to manage and optimize the scheduling of information resources to better meet various business needs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.