扭转点、Pell方程和初等积分

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
D. Masser, U. Zannier
{"title":"扭转点、Pell方程和初等积分","authors":"D. Masser, U. Zannier","doi":"10.4310/ACTA.2020.V225.N2.A2","DOIUrl":null,"url":null,"abstract":"The main results of this paper involve general algebraic differentials $\\omega$ on a general pencil of algebraic curves. We show how to determine if $\\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Torsion points, Pell’s equation, and integration in elementary terms\",\"authors\":\"D. Masser, U. Zannier\",\"doi\":\"10.4310/ACTA.2020.V225.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main results of this paper involve general algebraic differentials $\\\\omega$ on a general pencil of algebraic curves. We show how to determine if $\\\\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2020.V225.N2.A2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2020.V225.N2.A2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 17

摘要

本文的主要结果涉及一般代数曲线上的一般代数微分$\omega$。我们展示了如何确定$\omega$在铅笔的无穷多个成员的初等项中是否是可积的。特别是,这纠正了詹姆斯·达文波特1981年的一个断言,并提供了第一个证明,即使是以相当强化的形式。我们还指出了与安德烈和赫鲁绍夫斯基的工作以及Grothendieck-Katz猜想的类比。为了达到这个目的,我们首先提供了独立结果的证明,这些结果扩展了与Zilber-Pink猜想相关的相对Manin-Mumford型的结论:我们在任意相对维数至少为2的一般阿贝尔格式中刻画了位于一般曲线上的扭点。反过来,我们提出了后一个结果的另一个应用于多项式环上的Pell方程$a^2-DB^2=1$的相当一般的铅笔。我们确定Pell方程(平方为$D$)对于铅笔的无限多个成员是否是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion points, Pell’s equation, and integration in elementary terms
The main results of this paper involve general algebraic differentials $\omega$ on a general pencil of algebraic curves. We show how to determine if $\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信