{"title":"扭转点、Pell方程和初等积分","authors":"D. Masser, U. Zannier","doi":"10.4310/ACTA.2020.V225.N2.A2","DOIUrl":null,"url":null,"abstract":"The main results of this paper involve general algebraic differentials $\\omega$ on a general pencil of algebraic curves. We show how to determine if $\\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Torsion points, Pell’s equation, and integration in elementary terms\",\"authors\":\"D. Masser, U. Zannier\",\"doi\":\"10.4310/ACTA.2020.V225.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main results of this paper involve general algebraic differentials $\\\\omega$ on a general pencil of algebraic curves. We show how to determine if $\\\\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2020.V225.N2.A2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2020.V225.N2.A2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Torsion points, Pell’s equation, and integration in elementary terms
The main results of this paper involve general algebraic differentials $\omega$ on a general pencil of algebraic curves. We show how to determine if $\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.