{"title":"不同转子构型倒锥垂直轴风力机气动性能研究","authors":"Lei Zhang, Ao Wang, J. Qu, E. Benini","doi":"10.1063/5.0145195","DOIUrl":null,"url":null,"abstract":"Offshore wind resources are abundant. Vertical axis wind turbines (VAWTs) are suitable for working in the sea environment because of their low cost and high reliability. In this paper, an offshore floating inverted cone vertical axis wind turbine (ICVAWT) is proposed. The 3D unsteady computational fluid dynamics (CFD) method is utilized to model the ICVAWT. The turbulence model SST k−ω is used to solve the Navier–Stokes equation, and the setting parameters of the solver and the independent grid are determined. The scale experimental prototype is designed using the similarity theory and the wind tunnel experiment is carried out. The experimental results verify the validity of the CFD model. The aerodynamic performance of nine ICVAWT configurations is analyzed by using the CFD model, and the effects of inverted cone angle and blade number on the power coefficient and operation stability of the ICVAWT are studied. It is found that when the inverted cone angle is 45°, and the number of blades is three (called the optimal configuration), the power coefficient is the highest at 0.309 (the optimal tip speed ratio is 3.5). With the increase in inverted cone angle and blade number, the fluctuation of wind turbine operating torque decreases. According to the distribution of each physical quantity in the flow field, the changes in aerodynamic performance are explained. Further research on the optimized configuration is carried out.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on aerodynamic performance of inverted cone vertical axis wind turbine with different rotor configurations\",\"authors\":\"Lei Zhang, Ao Wang, J. Qu, E. Benini\",\"doi\":\"10.1063/5.0145195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore wind resources are abundant. Vertical axis wind turbines (VAWTs) are suitable for working in the sea environment because of their low cost and high reliability. In this paper, an offshore floating inverted cone vertical axis wind turbine (ICVAWT) is proposed. The 3D unsteady computational fluid dynamics (CFD) method is utilized to model the ICVAWT. The turbulence model SST k−ω is used to solve the Navier–Stokes equation, and the setting parameters of the solver and the independent grid are determined. The scale experimental prototype is designed using the similarity theory and the wind tunnel experiment is carried out. The experimental results verify the validity of the CFD model. The aerodynamic performance of nine ICVAWT configurations is analyzed by using the CFD model, and the effects of inverted cone angle and blade number on the power coefficient and operation stability of the ICVAWT are studied. It is found that when the inverted cone angle is 45°, and the number of blades is three (called the optimal configuration), the power coefficient is the highest at 0.309 (the optimal tip speed ratio is 3.5). With the increase in inverted cone angle and blade number, the fluctuation of wind turbine operating torque decreases. According to the distribution of each physical quantity in the flow field, the changes in aerodynamic performance are explained. Further research on the optimized configuration is carried out.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0145195\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0145195","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on aerodynamic performance of inverted cone vertical axis wind turbine with different rotor configurations
Offshore wind resources are abundant. Vertical axis wind turbines (VAWTs) are suitable for working in the sea environment because of their low cost and high reliability. In this paper, an offshore floating inverted cone vertical axis wind turbine (ICVAWT) is proposed. The 3D unsteady computational fluid dynamics (CFD) method is utilized to model the ICVAWT. The turbulence model SST k−ω is used to solve the Navier–Stokes equation, and the setting parameters of the solver and the independent grid are determined. The scale experimental prototype is designed using the similarity theory and the wind tunnel experiment is carried out. The experimental results verify the validity of the CFD model. The aerodynamic performance of nine ICVAWT configurations is analyzed by using the CFD model, and the effects of inverted cone angle and blade number on the power coefficient and operation stability of the ICVAWT are studied. It is found that when the inverted cone angle is 45°, and the number of blades is three (called the optimal configuration), the power coefficient is the highest at 0.309 (the optimal tip speed ratio is 3.5). With the increase in inverted cone angle and blade number, the fluctuation of wind turbine operating torque decreases. According to the distribution of each physical quantity in the flow field, the changes in aerodynamic performance are explained. Further research on the optimized configuration is carried out.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy