颗粒增强铝金属基纳米复合材料摩擦学特性研究进展

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Deepak M Shinde, P. Sahoo, J. P. Davim
{"title":"颗粒增强铝金属基纳米复合材料摩擦学特性研究进展","authors":"Deepak M Shinde, P. Sahoo, J. P. Davim","doi":"10.1177/2633366X20921403","DOIUrl":null,"url":null,"abstract":"Aluminum (Al)-based composites are on increasing usage in sectors like ground transportation, aerospace, sports, and infrastructure because of the improved properties such as high strength to weight ratio, corrosion, fatigue, and wear resistance. Several applications involving dynamic contact stresses require excellent wear and frictional performance for improved life. Nanocomposites are found to perform exceedingly better than microcomposites and alloys in several lab scale tribological investigations carried out so far in the last decade. In this article, an attempt is made to review those published reports about dry sliding tribological behavior of particulate-reinforced Al nanocomposites. Wear and friction being system properties are found to get influenced by intrinsic factors such as reinforcement, fabrication method, microstructure; extrinsic parameters like load, speed, contact conditions and the system generated in situ tribolayer all being interrelated.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20921403","citationCount":"32","resultStr":"{\"title\":\"Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: A review\",\"authors\":\"Deepak M Shinde, P. Sahoo, J. P. Davim\",\"doi\":\"10.1177/2633366X20921403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum (Al)-based composites are on increasing usage in sectors like ground transportation, aerospace, sports, and infrastructure because of the improved properties such as high strength to weight ratio, corrosion, fatigue, and wear resistance. Several applications involving dynamic contact stresses require excellent wear and frictional performance for improved life. Nanocomposites are found to perform exceedingly better than microcomposites and alloys in several lab scale tribological investigations carried out so far in the last decade. In this article, an attempt is made to review those published reports about dry sliding tribological behavior of particulate-reinforced Al nanocomposites. Wear and friction being system properties are found to get influenced by intrinsic factors such as reinforcement, fabrication method, microstructure; extrinsic parameters like load, speed, contact conditions and the system generated in situ tribolayer all being interrelated.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X20921403\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20921403\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20921403","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 32

摘要

铝基复合材料在地面运输、航空航天、体育和基础设施等领域的应用越来越多,因为它具有高强度重量比、耐腐蚀、耐疲劳和耐磨性等性能。一些涉及动态接触应力的应用需要优异的磨损和摩擦性能,以提高使用寿命。在过去十年中进行的几项实验室规模的摩擦学研究发现,纳米复合材料的性能比微复合材料和合金要好得多。本文对颗粒增强Al纳米复合材料的干滑动摩擦学性能进行了综述。研究发现,增强剂、制备方法、微观组织等内在因素对摩擦磨损体系性能有一定的影响;载荷、速度、接触条件和系统生成的摩擦层等外在参数都是相互关联的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: A review
Aluminum (Al)-based composites are on increasing usage in sectors like ground transportation, aerospace, sports, and infrastructure because of the improved properties such as high strength to weight ratio, corrosion, fatigue, and wear resistance. Several applications involving dynamic contact stresses require excellent wear and frictional performance for improved life. Nanocomposites are found to perform exceedingly better than microcomposites and alloys in several lab scale tribological investigations carried out so far in the last decade. In this article, an attempt is made to review those published reports about dry sliding tribological behavior of particulate-reinforced Al nanocomposites. Wear and friction being system properties are found to get influenced by intrinsic factors such as reinforcement, fabrication method, microstructure; extrinsic parameters like load, speed, contact conditions and the system generated in situ tribolayer all being interrelated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信