西藏拉萨北部晚二叠世至早三叠世缩回辉长岩:古特提斯洋羽流-俯冲带相互作用的证据

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Meng-long Duan, Chao-Ming Xie, Bin Wang, Yuhang Song, Wen-qing Li, Y. Hao
{"title":"西藏拉萨北部晚二叠世至早三叠世缩回辉长岩:古特提斯洋羽流-俯冲带相互作用的证据","authors":"Meng-long Duan, Chao-Ming Xie, Bin Wang, Yuhang Song, Wen-qing Li, Y. Hao","doi":"10.1017/S0016756822001182","DOIUrl":null,"url":null,"abstract":"Abstract The Palaeo-Mesozoic geodynamic evolution of the Tangjia–Sumdo accretionary complex belt, which separates the North and South Lhasa Terrane, remains controversial. Moreover, the lack of geological records restricts the understanding of the evolution of the Sumdo Palaeo-Tethys Ocean from the middle Permian until the middle Triassic. Here we present zircon U–Pb geochronology, whole-rock geochemistry and Sr–Nd–Hf isotopic compositions of the Yeqing gabbro. Zircon U–Pb geochronology yields ages from 254 ± 1 to 249 ± 1 Ma. In situ Hf isotopic analyses yield ϵ Hf(t) values of −0.2 to +6.3. These samples have high TiO2 (3.69 wt %) and P2O5 (0.78 wt %) contents, with typical patterns like ocean island basalt (OIB). Besides, they are classified as high-Nb basalts (HNBs) based on the high content of Nb (45.3–113.5 ppm). Whole-rock Sr–Nd isotopic compositions are similar to OIB, with initial 87Sr/86Sr of 0.7047–0.7054, 143Nd/144Nd of 0.512526–0.512647 and ϵ Nd(t) of 0.3–2.7. These signatures suggest that the Yeqing gabbro is mainly derived from low-degree melting of the garnet lherzolite mantle. Based on field observations of HNBs intruding into the continental margin and their geochemical characteristics, we infer that the Yeqing gabbro was generated in a subduction environment. Combined with the regional geology of the subduction environment and the evolution of oceanic islands in the Sumdo Palaeo-Tethys Ocean, we propose that the Yeqing gabbro may represent a product of the asthenosphere upwelling through a slab window produced by subduction of seismic ridge in the Sumdo Palaeo-Tethys Ocean, called plume – subduction-zone interaction, during the late Permian to early Triassic.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RETRACTED-Late Permian to early Triassic gabbro in North Lhasa, Tibet: evidence for plume – subduction-zone interaction of the Palaeo-Tethys ocean\",\"authors\":\"Meng-long Duan, Chao-Ming Xie, Bin Wang, Yuhang Song, Wen-qing Li, Y. Hao\",\"doi\":\"10.1017/S0016756822001182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Palaeo-Mesozoic geodynamic evolution of the Tangjia–Sumdo accretionary complex belt, which separates the North and South Lhasa Terrane, remains controversial. Moreover, the lack of geological records restricts the understanding of the evolution of the Sumdo Palaeo-Tethys Ocean from the middle Permian until the middle Triassic. Here we present zircon U–Pb geochronology, whole-rock geochemistry and Sr–Nd–Hf isotopic compositions of the Yeqing gabbro. Zircon U–Pb geochronology yields ages from 254 ± 1 to 249 ± 1 Ma. In situ Hf isotopic analyses yield ϵ Hf(t) values of −0.2 to +6.3. These samples have high TiO2 (3.69 wt %) and P2O5 (0.78 wt %) contents, with typical patterns like ocean island basalt (OIB). Besides, they are classified as high-Nb basalts (HNBs) based on the high content of Nb (45.3–113.5 ppm). Whole-rock Sr–Nd isotopic compositions are similar to OIB, with initial 87Sr/86Sr of 0.7047–0.7054, 143Nd/144Nd of 0.512526–0.512647 and ϵ Nd(t) of 0.3–2.7. These signatures suggest that the Yeqing gabbro is mainly derived from low-degree melting of the garnet lherzolite mantle. Based on field observations of HNBs intruding into the continental margin and their geochemical characteristics, we infer that the Yeqing gabbro was generated in a subduction environment. Combined with the regional geology of the subduction environment and the evolution of oceanic islands in the Sumdo Palaeo-Tethys Ocean, we propose that the Yeqing gabbro may represent a product of the asthenosphere upwelling through a slab window produced by subduction of seismic ridge in the Sumdo Palaeo-Tethys Ocean, called plume – subduction-zone interaction, during the late Permian to early Triassic.\",\"PeriodicalId\":12612,\"journal\":{\"name\":\"Geological Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S0016756822001182\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0016756822001182","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分隔拉萨地体南北的唐家—松都增生杂岩带的古中生代地球动力学演化至今仍有争议。此外,地质记录的缺乏限制了对中二叠世至中三叠世Sumdo古特提斯洋演化的认识。本文介绍了叶庆辉长岩的锆石U-Pb年代学、全岩地球化学和Sr-Nd-Hf同位素组成。锆石U-Pb年代学显示锆石年龄在254±1 ~ 249±1 Ma之间。原位Hf同位素分析得出的δ Hf(t)值为−0.2至+6.3。样品具有较高的TiO2 (3.69 wt %)和P2O5 (0.78 wt %)含量,具有典型的洋岛玄武岩(OIB)样。根据高铌含量(45.3 ~ 113.5 ppm),将其归类为高铌玄武岩(HNBs)。全岩Sr-Nd同位素组成与OIB相似,初始87Sr/86Sr为0.7047 ~ 0.7054,143Nd/144Nd为0.512526 ~ 0.512647,λ Nd(t)为0.3 ~ 2.7。这些特征表明,叶庆辉长岩主要来源于石榴石辉长岩地幔的低熔融作用。根据侵入大陆边缘HNBs的野外观测及其地球化学特征,推断叶青辉长岩形成于俯冲环境。结合Sumdo古特提斯洋俯冲环境的区域地质和海洋岛屿的演化,我们认为叶青辉长岩可能是在晚二叠世至早三叠世期间,Sumdo古特提斯洋地震脊俯冲产生的板窗内软流圈上涌的产物,称为羽流-俯冲带相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RETRACTED-Late Permian to early Triassic gabbro in North Lhasa, Tibet: evidence for plume – subduction-zone interaction of the Palaeo-Tethys ocean
Abstract The Palaeo-Mesozoic geodynamic evolution of the Tangjia–Sumdo accretionary complex belt, which separates the North and South Lhasa Terrane, remains controversial. Moreover, the lack of geological records restricts the understanding of the evolution of the Sumdo Palaeo-Tethys Ocean from the middle Permian until the middle Triassic. Here we present zircon U–Pb geochronology, whole-rock geochemistry and Sr–Nd–Hf isotopic compositions of the Yeqing gabbro. Zircon U–Pb geochronology yields ages from 254 ± 1 to 249 ± 1 Ma. In situ Hf isotopic analyses yield ϵ Hf(t) values of −0.2 to +6.3. These samples have high TiO2 (3.69 wt %) and P2O5 (0.78 wt %) contents, with typical patterns like ocean island basalt (OIB). Besides, they are classified as high-Nb basalts (HNBs) based on the high content of Nb (45.3–113.5 ppm). Whole-rock Sr–Nd isotopic compositions are similar to OIB, with initial 87Sr/86Sr of 0.7047–0.7054, 143Nd/144Nd of 0.512526–0.512647 and ϵ Nd(t) of 0.3–2.7. These signatures suggest that the Yeqing gabbro is mainly derived from low-degree melting of the garnet lherzolite mantle. Based on field observations of HNBs intruding into the continental margin and their geochemical characteristics, we infer that the Yeqing gabbro was generated in a subduction environment. Combined with the regional geology of the subduction environment and the evolution of oceanic islands in the Sumdo Palaeo-Tethys Ocean, we propose that the Yeqing gabbro may represent a product of the asthenosphere upwelling through a slab window produced by subduction of seismic ridge in the Sumdo Palaeo-Tethys Ocean, called plume – subduction-zone interaction, during the late Permian to early Triassic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geological Magazine
Geological Magazine 地学-地球科学综合
CiteScore
4.70
自引率
0.00%
发文量
111
审稿时长
3 months
期刊介绍: Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field. This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信