基于估计和命令滤波的电驱动柔性关节机器人神经网络控制

IF 2.3 4区 计算机科学 Q2 Computer Science
Qu Wen, Li Yang
{"title":"基于估计和命令滤波的电驱动柔性关节机器人神经网络控制","authors":"Qu Wen, Li Yang","doi":"10.1177/17298806221127101","DOIUrl":null,"url":null,"abstract":"The article proposes an estimator and command filtering-based adaptive neural network controller for the electrically driven flexible-joint robotic manipulators with output constraints under the circumstance of matched and mismatched disturbances in system dynamics. The presented method is designed based on electrically driven model of the n-link flexible-joint robotic manipulators, which introduces more uncertainties and increases the dimensionality of the system but is more in line with practical. In view of the properties of fast convergence speed and great estimation performance in radial basis function neural network, radial basis function neural network is used to approximate the internal uncertain dynamic parameters of the system. An observer-based estimator is introduced for estimating the matched and mismatched disturbances in flexible-joint robotic manipulator dynamics. As to the differential explosion problem in backstepping control design, this article utilizes second-order command filters to overcome it. This article also adopts barrier Lyapunov functions for implementing output constraint to consider security issues in practical use. For demonstrating the effectiveness of the proposed controller, numerical simulations on two-link flexible-joint robotic manipulators are conducted. On the basis of the comparisons among estimator and command filtering-based adaptive neural network controller and other advanced controllers, the superiorities of estimator and command filtering-based adaptive neural network controller in several areas are proved.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimator and command filtering-based neural network control for flexible-joint robotic manipulators driven by electricity\",\"authors\":\"Qu Wen, Li Yang\",\"doi\":\"10.1177/17298806221127101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes an estimator and command filtering-based adaptive neural network controller for the electrically driven flexible-joint robotic manipulators with output constraints under the circumstance of matched and mismatched disturbances in system dynamics. The presented method is designed based on electrically driven model of the n-link flexible-joint robotic manipulators, which introduces more uncertainties and increases the dimensionality of the system but is more in line with practical. In view of the properties of fast convergence speed and great estimation performance in radial basis function neural network, radial basis function neural network is used to approximate the internal uncertain dynamic parameters of the system. An observer-based estimator is introduced for estimating the matched and mismatched disturbances in flexible-joint robotic manipulator dynamics. As to the differential explosion problem in backstepping control design, this article utilizes second-order command filters to overcome it. This article also adopts barrier Lyapunov functions for implementing output constraint to consider security issues in practical use. For demonstrating the effectiveness of the proposed controller, numerical simulations on two-link flexible-joint robotic manipulators are conducted. On the basis of the comparisons among estimator and command filtering-based adaptive neural network controller and other advanced controllers, the superiorities of estimator and command filtering-based adaptive neural network controller in several areas are proved.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221127101\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221127101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

针对具有输出约束的电驱动柔性关节机器人在系统动力学中存在匹配干扰和不匹配干扰的情况下,提出了一种基于估计量和命令滤波的自适应神经网络控制器。该方法是基于n连杆柔性关节机器人的电驱动模型设计的,引入了更多的不确定性,增加了系统的维数,但更符合实际。鉴于径向基函数神经网络收敛速度快、估计性能好等特点,采用径向基函数神经网络对系统内部不确定动态参数进行逼近。提出了一种基于观测器的估计器,用于估计柔性关节机器人动力学中的匹配和不匹配扰动。针对反步控制设计中的微分爆炸问题,本文采用二阶命令滤波器来克服。本文还采用屏障Lyapunov函数实现输出约束,以考虑实际使用中的安全问题。为了验证所提控制器的有效性,对双连杆柔性关节机器人进行了数值仿真。在比较了基于估计量和命令滤波的自适应神经网络控制器与其他先进控制器的基础上,证明了基于估计量和命令滤波的自适应神经网络控制器在多个领域的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimator and command filtering-based neural network control for flexible-joint robotic manipulators driven by electricity
The article proposes an estimator and command filtering-based adaptive neural network controller for the electrically driven flexible-joint robotic manipulators with output constraints under the circumstance of matched and mismatched disturbances in system dynamics. The presented method is designed based on electrically driven model of the n-link flexible-joint robotic manipulators, which introduces more uncertainties and increases the dimensionality of the system but is more in line with practical. In view of the properties of fast convergence speed and great estimation performance in radial basis function neural network, radial basis function neural network is used to approximate the internal uncertain dynamic parameters of the system. An observer-based estimator is introduced for estimating the matched and mismatched disturbances in flexible-joint robotic manipulator dynamics. As to the differential explosion problem in backstepping control design, this article utilizes second-order command filters to overcome it. This article also adopts barrier Lyapunov functions for implementing output constraint to consider security issues in practical use. For demonstrating the effectiveness of the proposed controller, numerical simulations on two-link flexible-joint robotic manipulators are conducted. On the basis of the comparisons among estimator and command filtering-based adaptive neural network controller and other advanced controllers, the superiorities of estimator and command filtering-based adaptive neural network controller in several areas are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信