Giuseppe Lippi, Brandon M Henry, Laura Pighi, Simone De Nitto, Gian Luca Salvagno
{"title":"抗SARS-CoV-2 S/N IgG/IgM抗体是否总是预测先前的SARS-CoV-2感染?","authors":"Giuseppe Lippi, Brandon M Henry, Laura Pighi, Simone De Nitto, Gian Luca Salvagno","doi":"10.1515/almed-2023-0008","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We planned this study to verify whether immunoassays for quantifying anti-SARS-CoV-2 IgG/IgM antibodies against both spike (S) and nucleocapsid (N) proteins may be used for identifying previous SARS-CoV-2 infections.</p><p><strong>Methods: </strong>The study population consisted of a cohort of fully vaccinated healthcare workers. All study subjects underwent regular medical visits and molecular testing for diagnosing SARS-CoV-2 infections every 2-4 weeks between 2020-2022. Venous blood was drawn for measuring anti-SARS-CoV-2 antibodies with MAGLUMI 2019-nCoV lgG/IgM CLIA Assays directed against both SARS-CoV-2 S and N proteins.</p><p><strong>Results: </strong>Overall, 31/53 (58.5%) subjects had tested positive for SARS-CoV-2 by RT-PCR throughout the study (24 once, 7 twice). No positive correlation was found between anti-SARS-CoV-2 S/N IgM antibodies and molecular test positivity. In univariate regression analysis, both a molecular test positivity (r=0.33; p=0.015) and the number of positive molecular tests (r=0.43; p=0.001), but not vaccine doses (r=-0.12; p=0.392), were significantly correlated with anti-SARS-CoV-2 S/N IgG antibodies. These two associations remained significant in multiple linear regression analysis (p=0.029 and p<0.001, respectively) after adjusting for sex, age, body mass index, and vaccine doses. In ROC curve analysis, anti-SARS-CoV-2 S/N IgG antibodies significantly predicted molecular test positivity (AUC, 0.69; 95% CI; 0.55-0.84), with the best cutoff of 0.05 AU/mL displaying 67.9% accuracy, 0.97 sensitivity, and 0.27 specificity.</p><p><strong>Conclusions: </strong>Although anti-SARS-CoV-2 S/N IgG antibodies provide helpful information for identifying previous SARS-CoV-2 infections, a lower cutoff than that of sample reactivity should be used. Anti-SARS-CoV-2 S/N IgM antibodies using conventional cutoffs seem useless for this purpose.</p>","PeriodicalId":72097,"journal":{"name":"Advances in laboratory medicine","volume":"4 1","pages":"175-184"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Are anti-SARS-CoV-2 S/N IgG/IgM antibodies always predictive of previous SARS-CoV-2 infection?\",\"authors\":\"Giuseppe Lippi, Brandon M Henry, Laura Pighi, Simone De Nitto, Gian Luca Salvagno\",\"doi\":\"10.1515/almed-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We planned this study to verify whether immunoassays for quantifying anti-SARS-CoV-2 IgG/IgM antibodies against both spike (S) and nucleocapsid (N) proteins may be used for identifying previous SARS-CoV-2 infections.</p><p><strong>Methods: </strong>The study population consisted of a cohort of fully vaccinated healthcare workers. All study subjects underwent regular medical visits and molecular testing for diagnosing SARS-CoV-2 infections every 2-4 weeks between 2020-2022. Venous blood was drawn for measuring anti-SARS-CoV-2 antibodies with MAGLUMI 2019-nCoV lgG/IgM CLIA Assays directed against both SARS-CoV-2 S and N proteins.</p><p><strong>Results: </strong>Overall, 31/53 (58.5%) subjects had tested positive for SARS-CoV-2 by RT-PCR throughout the study (24 once, 7 twice). No positive correlation was found between anti-SARS-CoV-2 S/N IgM antibodies and molecular test positivity. In univariate regression analysis, both a molecular test positivity (r=0.33; p=0.015) and the number of positive molecular tests (r=0.43; p=0.001), but not vaccine doses (r=-0.12; p=0.392), were significantly correlated with anti-SARS-CoV-2 S/N IgG antibodies. These two associations remained significant in multiple linear regression analysis (p=0.029 and p<0.001, respectively) after adjusting for sex, age, body mass index, and vaccine doses. In ROC curve analysis, anti-SARS-CoV-2 S/N IgG antibodies significantly predicted molecular test positivity (AUC, 0.69; 95% CI; 0.55-0.84), with the best cutoff of 0.05 AU/mL displaying 67.9% accuracy, 0.97 sensitivity, and 0.27 specificity.</p><p><strong>Conclusions: </strong>Although anti-SARS-CoV-2 S/N IgG antibodies provide helpful information for identifying previous SARS-CoV-2 infections, a lower cutoff than that of sample reactivity should be used. Anti-SARS-CoV-2 S/N IgM antibodies using conventional cutoffs seem useless for this purpose.</p>\",\"PeriodicalId\":72097,\"journal\":{\"name\":\"Advances in laboratory medicine\",\"volume\":\"4 1\",\"pages\":\"175-184\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/almed-2023-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/almed-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Are anti-SARS-CoV-2 S/N IgG/IgM antibodies always predictive of previous SARS-CoV-2 infection?
Objectives: We planned this study to verify whether immunoassays for quantifying anti-SARS-CoV-2 IgG/IgM antibodies against both spike (S) and nucleocapsid (N) proteins may be used for identifying previous SARS-CoV-2 infections.
Methods: The study population consisted of a cohort of fully vaccinated healthcare workers. All study subjects underwent regular medical visits and molecular testing for diagnosing SARS-CoV-2 infections every 2-4 weeks between 2020-2022. Venous blood was drawn for measuring anti-SARS-CoV-2 antibodies with MAGLUMI 2019-nCoV lgG/IgM CLIA Assays directed against both SARS-CoV-2 S and N proteins.
Results: Overall, 31/53 (58.5%) subjects had tested positive for SARS-CoV-2 by RT-PCR throughout the study (24 once, 7 twice). No positive correlation was found between anti-SARS-CoV-2 S/N IgM antibodies and molecular test positivity. In univariate regression analysis, both a molecular test positivity (r=0.33; p=0.015) and the number of positive molecular tests (r=0.43; p=0.001), but not vaccine doses (r=-0.12; p=0.392), were significantly correlated with anti-SARS-CoV-2 S/N IgG antibodies. These two associations remained significant in multiple linear regression analysis (p=0.029 and p<0.001, respectively) after adjusting for sex, age, body mass index, and vaccine doses. In ROC curve analysis, anti-SARS-CoV-2 S/N IgG antibodies significantly predicted molecular test positivity (AUC, 0.69; 95% CI; 0.55-0.84), with the best cutoff of 0.05 AU/mL displaying 67.9% accuracy, 0.97 sensitivity, and 0.27 specificity.
Conclusions: Although anti-SARS-CoV-2 S/N IgG antibodies provide helpful information for identifying previous SARS-CoV-2 infections, a lower cutoff than that of sample reactivity should be used. Anti-SARS-CoV-2 S/N IgM antibodies using conventional cutoffs seem useless for this purpose.