{"title":"风电场自动发电控制的深度学习优化调度","authors":"Ruilin Chen, Lei Zhao, Xiaoshun Zhang, Chuan Li, Guiyuan Zhang, Tian Xu","doi":"10.1063/5.0153957","DOIUrl":null,"url":null,"abstract":"As a wind farm participates in automatic generation control (AGC), it should trace the real-time AGC signal from the independent system operator. To achieve a high responding performance, the real-time AGC signal should be rapidly distributed to multiple wind turbines (WTs) via an optimal dispatch. It is essentially a non-linear complex optimization due to the wake effect between different WTs. To solve this problem, a deep learning is employed to rapidly generate the dispatch scheme of AGC in a wind farm. The training data of deep learning is acquired from the optimization results of different anticipated tasks by genetic algorithm. In order to guarantee a reliable on-line decision of deep learning, the error of the regulation power command is corrected via an adjustment method of rotor speed and pitch angle for each WT. The effectiveness of the proposed technique is evaluated by a wind farm compared with multiple optimization methods.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for optimal dispatch of automatic generation control in a wind farm\",\"authors\":\"Ruilin Chen, Lei Zhao, Xiaoshun Zhang, Chuan Li, Guiyuan Zhang, Tian Xu\",\"doi\":\"10.1063/5.0153957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a wind farm participates in automatic generation control (AGC), it should trace the real-time AGC signal from the independent system operator. To achieve a high responding performance, the real-time AGC signal should be rapidly distributed to multiple wind turbines (WTs) via an optimal dispatch. It is essentially a non-linear complex optimization due to the wake effect between different WTs. To solve this problem, a deep learning is employed to rapidly generate the dispatch scheme of AGC in a wind farm. The training data of deep learning is acquired from the optimization results of different anticipated tasks by genetic algorithm. In order to guarantee a reliable on-line decision of deep learning, the error of the regulation power command is corrected via an adjustment method of rotor speed and pitch angle for each WT. The effectiveness of the proposed technique is evaluated by a wind farm compared with multiple optimization methods.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0153957\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0153957","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep learning for optimal dispatch of automatic generation control in a wind farm
As a wind farm participates in automatic generation control (AGC), it should trace the real-time AGC signal from the independent system operator. To achieve a high responding performance, the real-time AGC signal should be rapidly distributed to multiple wind turbines (WTs) via an optimal dispatch. It is essentially a non-linear complex optimization due to the wake effect between different WTs. To solve this problem, a deep learning is employed to rapidly generate the dispatch scheme of AGC in a wind farm. The training data of deep learning is acquired from the optimization results of different anticipated tasks by genetic algorithm. In order to guarantee a reliable on-line decision of deep learning, the error of the regulation power command is corrected via an adjustment method of rotor speed and pitch angle for each WT. The effectiveness of the proposed technique is evaluated by a wind farm compared with multiple optimization methods.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy