关于Waring分布的最大似然

IF 0.7 Q3 STATISTICS & PROBABILITY
Yanlin Tang, Jing-Long Wang, Zhongyi Zhu
{"title":"关于Waring分布的最大似然","authors":"Yanlin Tang, Jing-Long Wang, Zhongyi Zhu","doi":"10.1080/24754269.2023.2176608","DOIUrl":null,"url":null,"abstract":"The two-parameter Waring is an important heavy-tailed discrete distribution, which extends the famous Yule-Simon distribution and provides more flexibility when modelling the data. The commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied when the first moment exists, and it only uses the information of the expectation and the first frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the MLE may not exist for some sample data. We apply the profile method to the log-likelihood function and derive the necessary and sufficient conditions for the existence of the MLE of the Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods, and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring distribution to fit an insurance data.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"144 - 158"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the MLE of the Waring distribution\",\"authors\":\"Yanlin Tang, Jing-Long Wang, Zhongyi Zhu\",\"doi\":\"10.1080/24754269.2023.2176608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-parameter Waring is an important heavy-tailed discrete distribution, which extends the famous Yule-Simon distribution and provides more flexibility when modelling the data. The commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied when the first moment exists, and it only uses the information of the expectation and the first frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the MLE may not exist for some sample data. We apply the profile method to the log-likelihood function and derive the necessary and sufficient conditions for the existence of the MLE of the Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods, and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring distribution to fit an insurance data.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"7 1\",\"pages\":\"144 - 158\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2023.2176608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2176608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

双参数Waring是一种重要的重尾离散分布,它扩展了著名的Yule-Simon分布,为数据建模提供了更大的灵活性。常用的参数估计方法EFF (expectation - first Frequency)只有在第一矩存在的情况下才能应用,而且它只利用了期望和第一频率的信息,效率不如极大似然估计(MLE)。然而,对于某些样本数据,最大似然值可能不存在。将剖面法应用于对数似然函数,得到了Waring参数最大似然值存在的充分必要条件。我们使用了大量的模拟研究来比较MLE和EFF方法,以及与Yule-Simon分布的拟合优度比较。我们还应用沃林分布来拟合保险数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the MLE of the Waring distribution
The two-parameter Waring is an important heavy-tailed discrete distribution, which extends the famous Yule-Simon distribution and provides more flexibility when modelling the data. The commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied when the first moment exists, and it only uses the information of the expectation and the first frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the MLE may not exist for some sample data. We apply the profile method to the log-likelihood function and derive the necessary and sufficient conditions for the existence of the MLE of the Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods, and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring distribution to fit an insurance data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信