具有大自同构群和(κ,µ)-空间的接触度量流形

IF 0.5 Q3 MATHEMATICS
A. Lotta
{"title":"具有大自同构群和(κ,µ)-空间的接触度量流形","authors":"A. Lotta","doi":"10.1515/coma-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract We discuss the classifiation of simply connected, complete (κ, µ)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (κ, µ)-spaces having Boeckx invariant -1. Finally, we prove that the number (n+1)(n+2)2 ${{(n + 1)(n + 2)} \\over 2}$ is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n +1, n ≥ 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (κ, µ)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"294 - 302"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0015","citationCount":"2","resultStr":"{\"title\":\"Contact metric manifolds with large automorphism group and (κ, µ)-spaces\",\"authors\":\"A. Lotta\",\"doi\":\"10.1515/coma-2019-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss the classifiation of simply connected, complete (κ, µ)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (κ, µ)-spaces having Boeckx invariant -1. Finally, we prove that the number (n+1)(n+2)2 ${{(n + 1)(n + 2)} \\\\over 2}$ is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n +1, n ≥ 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (κ, µ)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"294 - 302\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0015\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们从齐次空间的角度讨论了单连通完全(κ,µ)-空间的分类。特别地,我们展示了具有Boeckx不变量-1的(κ,µ)-空间的新模型。最后,我们证明了2}$上的数(n+1)(n+2)2${{(n+1,n+2)}\是一个2n+1,n≥2的接触度量流形的自同构群的最大维数,其对称算子h在某个点上的秩至少为3;如果达到这个尺寸,并且流形的尺寸不是7,那么它必须是(κ,µ)-空间。同样的结论也适用于维度7,前提是所考虑的接触度量流形的几乎CR结构是可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact metric manifolds with large automorphism group and (κ, µ)-spaces
Abstract We discuss the classifiation of simply connected, complete (κ, µ)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (κ, µ)-spaces having Boeckx invariant -1. Finally, we prove that the number (n+1)(n+2)2 ${{(n + 1)(n + 2)} \over 2}$ is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n +1, n ≥ 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (κ, µ)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信