{"title":"高阶非线性微分方程的渐近逼近性","authors":"I. Astashova, M. Bartusek, Z. Došlá, M. Marini","doi":"10.1515/anona-2022-0254","DOIUrl":null,"url":null,"abstract":"Abstract The existence of unbounded solutions and their asymptotic behavior is studied for higher order differential equations considered as perturbations of certain linear differential equations. In particular, the existence of solutions with polynomial-like or noninteger power-law asymptotic behavior is proved. These results give a relation between solutions to nonlinear and corresponding linear equations, which can be interpreted, roughly speaking, as an asymptotic proximity between the linear case and the nonlinear one. Our approach is based on the induction method, an iterative process and suitable estimates for solutions to the linear equation.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1598 - 1613"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Asymptotic proximity to higher order nonlinear differential equations\",\"authors\":\"I. Astashova, M. Bartusek, Z. Došlá, M. Marini\",\"doi\":\"10.1515/anona-2022-0254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The existence of unbounded solutions and their asymptotic behavior is studied for higher order differential equations considered as perturbations of certain linear differential equations. In particular, the existence of solutions with polynomial-like or noninteger power-law asymptotic behavior is proved. These results give a relation between solutions to nonlinear and corresponding linear equations, which can be interpreted, roughly speaking, as an asymptotic proximity between the linear case and the nonlinear one. Our approach is based on the induction method, an iterative process and suitable estimates for solutions to the linear equation.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1598 - 1613\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0254\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0254","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic proximity to higher order nonlinear differential equations
Abstract The existence of unbounded solutions and their asymptotic behavior is studied for higher order differential equations considered as perturbations of certain linear differential equations. In particular, the existence of solutions with polynomial-like or noninteger power-law asymptotic behavior is proved. These results give a relation between solutions to nonlinear and corresponding linear equations, which can be interpreted, roughly speaking, as an asymptotic proximity between the linear case and the nonlinear one. Our approach is based on the induction method, an iterative process and suitable estimates for solutions to the linear equation.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.