螺栓载荷对工业部件缺陷结构完整性评估的影响

IF 0.4 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
R. Scheepers, M. Bezuidenhout
{"title":"螺栓载荷对工业部件缺陷结构完整性评估的影响","authors":"R. Scheepers, M. Bezuidenhout","doi":"10.3233/sfc-228009","DOIUrl":null,"url":null,"abstract":"Applied loads in bolted geometries of safety critical components can vary with time and operating conditions. Structural integrity and remaining life assessments of such components in aging industrial plants must consider the resultant changes in damage accumulation rates and acceptable defect sizes. Two case studies are presented that demonstrate the effect of bolt pre-load on creep and fatigue lives as well as on the acceptability assessments of defects. In the first case the sensitivity of creep damage accumulation and crack propagation rates to bolt pre-load in high temperature flanged connections are considered. Predicted results were found to compare well with actual damage quantified on a high pressure turbine loop pipe flange connection. It was shown that decreased pre-loads, in this case, leads to an increase the allowable safe defect size during assembly at room temperature. In contrast to this the second case study of corrosion fatigue cracking in a boiler water circulating pump illustrates that an increase in bolt pre-load leads to an increase in fatigue initiation life, a decrease in fatigue crack propagation rate and an increase in the acceptable defect size. Strain gauge measurements of bolt and casing strain, which correlated well with finite element calculations, indicated the necessity for close control of bolt pre-load during assembly to ensure specified levels are attained. In both cases metallurgical analysis and structural integrity assessments of cracked and excavated geometries were conducted which enabled limited continued operation of the components after which repairs and/or replacements will be implemented.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bolt loading effects on the structural integrity assessment of defects in industrial components\",\"authors\":\"R. Scheepers, M. Bezuidenhout\",\"doi\":\"10.3233/sfc-228009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applied loads in bolted geometries of safety critical components can vary with time and operating conditions. Structural integrity and remaining life assessments of such components in aging industrial plants must consider the resultant changes in damage accumulation rates and acceptable defect sizes. Two case studies are presented that demonstrate the effect of bolt pre-load on creep and fatigue lives as well as on the acceptability assessments of defects. In the first case the sensitivity of creep damage accumulation and crack propagation rates to bolt pre-load in high temperature flanged connections are considered. Predicted results were found to compare well with actual damage quantified on a high pressure turbine loop pipe flange connection. It was shown that decreased pre-loads, in this case, leads to an increase the allowable safe defect size during assembly at room temperature. In contrast to this the second case study of corrosion fatigue cracking in a boiler water circulating pump illustrates that an increase in bolt pre-load leads to an increase in fatigue initiation life, a decrease in fatigue crack propagation rate and an increase in the acceptable defect size. Strain gauge measurements of bolt and casing strain, which correlated well with finite element calculations, indicated the necessity for close control of bolt pre-load during assembly to ensure specified levels are attained. In both cases metallurgical analysis and structural integrity assessments of cracked and excavated geometries were conducted which enabled limited continued operation of the components after which repairs and/or replacements will be implemented.\",\"PeriodicalId\":41486,\"journal\":{\"name\":\"Strength Fracture and Complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength Fracture and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sfc-228009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-228009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

安全关键部件的螺栓几何形状中施加的载荷可能随时间和操作条件而变化。老化工业厂房中此类部件的结构完整性和剩余寿命评估必须考虑损伤累积率和可接受缺陷尺寸的变化。给出了两个案例研究,证明了螺栓预载荷对蠕变和疲劳寿命以及缺陷可接受性评估的影响。在第一种情况下,考虑了高温法兰连接中蠕变损伤累积和裂纹扩展速率对螺栓预载荷的敏感性。预测结果与高压涡轮机环形管法兰连接的实际损坏情况进行了比较。研究表明,在这种情况下,预载荷的减少会导致在室温下组装过程中允许的安全缺陷尺寸增加。与此相反,锅炉水循环泵腐蚀疲劳裂纹的第二个案例研究表明,螺栓预载荷的增加会导致疲劳起始寿命的增加、疲劳裂纹扩展速率的降低和可接受缺陷尺寸的增加。螺栓和套管应变的应变仪测量结果与有限元计算密切相关,表明有必要在组装过程中密切控制螺栓预载荷,以确保达到规定的水平。在这两种情况下,都对开裂和挖掘的几何形状进行了冶金分析和结构完整性评估,这使得部件能够有限地继续运行,之后将进行维修和/或更换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bolt loading effects on the structural integrity assessment of defects in industrial components
Applied loads in bolted geometries of safety critical components can vary with time and operating conditions. Structural integrity and remaining life assessments of such components in aging industrial plants must consider the resultant changes in damage accumulation rates and acceptable defect sizes. Two case studies are presented that demonstrate the effect of bolt pre-load on creep and fatigue lives as well as on the acceptability assessments of defects. In the first case the sensitivity of creep damage accumulation and crack propagation rates to bolt pre-load in high temperature flanged connections are considered. Predicted results were found to compare well with actual damage quantified on a high pressure turbine loop pipe flange connection. It was shown that decreased pre-loads, in this case, leads to an increase the allowable safe defect size during assembly at room temperature. In contrast to this the second case study of corrosion fatigue cracking in a boiler water circulating pump illustrates that an increase in bolt pre-load leads to an increase in fatigue initiation life, a decrease in fatigue crack propagation rate and an increase in the acceptable defect size. Strain gauge measurements of bolt and casing strain, which correlated well with finite element calculations, indicated the necessity for close control of bolt pre-load during assembly to ensure specified levels are attained. In both cases metallurgical analysis and structural integrity assessments of cracked and excavated geometries were conducted which enabled limited continued operation of the components after which repairs and/or replacements will be implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strength Fracture and Complexity
Strength Fracture and Complexity MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信