{"title":"多尺度自举特征选择后的选择性推理","authors":"Yoshikazu Terada, Hidetoshi Shimodaira","doi":"10.1007/s10463-022-00838-2","DOIUrl":null,"url":null,"abstract":"<div><p>It is common to show the confidence intervals or <i>p</i>-values of selected features, or predictor variables in regression, but they often involve selection bias. The selective inference approach solves this bias by conditioning on the selection event. Most existing studies of selective inference consider a specific algorithm, such as Lasso, for feature selection, and thus they have difficulties in handling more complicated algorithms. Moreover, existing studies often consider unnecessarily restrictive events, leading to over-conditioning and lower statistical power. Our novel and widely applicable resampling method via multiscale bootstrap addresses these issues to compute an approximately unbiased selective <i>p</i>-value for the selected features. As a simplification of the proposed method, we also develop a simpler method via the classical bootstrap. We prove that the <i>p</i>-value computed by our multiscale bootstrap method is more accurate than the classical bootstrap method. Furthermore, numerical experiments demonstrate that our algorithm works well even for more complicated feature selection methods such as non-convex regularization.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Selective inference after feature selection via multiscale bootstrap\",\"authors\":\"Yoshikazu Terada, Hidetoshi Shimodaira\",\"doi\":\"10.1007/s10463-022-00838-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is common to show the confidence intervals or <i>p</i>-values of selected features, or predictor variables in regression, but they often involve selection bias. The selective inference approach solves this bias by conditioning on the selection event. Most existing studies of selective inference consider a specific algorithm, such as Lasso, for feature selection, and thus they have difficulties in handling more complicated algorithms. Moreover, existing studies often consider unnecessarily restrictive events, leading to over-conditioning and lower statistical power. Our novel and widely applicable resampling method via multiscale bootstrap addresses these issues to compute an approximately unbiased selective <i>p</i>-value for the selected features. As a simplification of the proposed method, we also develop a simpler method via the classical bootstrap. We prove that the <i>p</i>-value computed by our multiscale bootstrap method is more accurate than the classical bootstrap method. Furthermore, numerical experiments demonstrate that our algorithm works well even for more complicated feature selection methods such as non-convex regularization.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00838-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00838-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Selective inference after feature selection via multiscale bootstrap
It is common to show the confidence intervals or p-values of selected features, or predictor variables in regression, but they often involve selection bias. The selective inference approach solves this bias by conditioning on the selection event. Most existing studies of selective inference consider a specific algorithm, such as Lasso, for feature selection, and thus they have difficulties in handling more complicated algorithms. Moreover, existing studies often consider unnecessarily restrictive events, leading to over-conditioning and lower statistical power. Our novel and widely applicable resampling method via multiscale bootstrap addresses these issues to compute an approximately unbiased selective p-value for the selected features. As a simplification of the proposed method, we also develop a simpler method via the classical bootstrap. We prove that the p-value computed by our multiscale bootstrap method is more accurate than the classical bootstrap method. Furthermore, numerical experiments demonstrate that our algorithm works well even for more complicated feature selection methods such as non-convex regularization.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.