基于人工神经网络和广义遗传算法的波浪液化预测

D. Kristianto, C. Fatichah, B. Amaliah, K. Sambodho
{"title":"基于人工神经网络和广义遗传算法的波浪液化预测","authors":"D. Kristianto, C. Fatichah, B. Amaliah, K. Sambodho","doi":"10.24843/LKJITI.2017.V08.I01.P01","DOIUrl":null,"url":null,"abstract":"The hassle of analytical and numerical solution for liquefaction modeling, repetitive laboratory testing and expensive field observations, have opened opportunities to develop simple, practical, inexpensive and valid prediction of wave-induced liquefaction. In this study, Artificial Neural Network (ANN) regression modeling is used to predict the depth of liquefaction. Despite of using Back Propagation (BP) to train ANN, a modified Genetic Algorithm (called as Wide GA, WGA) is used as ANN training method to improve ANN prediction accuracy and to overcome BP weaknesses such as premature convergence and local optimum. WGA also aim to avoid conventional GA weaknesses such as low population diversity and narrow search coverage. Key WGA operations are Wide Tournament Selection, Multi-Parent BLX-? Crossover, Aggregate Mate Pool Mutation and Direct Fresh Mutation-Crossover. ANN prediction accuracy measured by Median APE (MdAPE). Global optimum solution of WGA is best ANN connections weights configuration with smallest MdAPE.","PeriodicalId":31196,"journal":{"name":"Lontar Komputer","volume":"1 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.24843/LKJITI.2017.V08.I01.P01","citationCount":"4","resultStr":"{\"title\":\"Prediction of Wave-induced Liquefaction using Artificial Neural Network and Wide Genetic Algorithm\",\"authors\":\"D. Kristianto, C. Fatichah, B. Amaliah, K. Sambodho\",\"doi\":\"10.24843/LKJITI.2017.V08.I01.P01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hassle of analytical and numerical solution for liquefaction modeling, repetitive laboratory testing and expensive field observations, have opened opportunities to develop simple, practical, inexpensive and valid prediction of wave-induced liquefaction. In this study, Artificial Neural Network (ANN) regression modeling is used to predict the depth of liquefaction. Despite of using Back Propagation (BP) to train ANN, a modified Genetic Algorithm (called as Wide GA, WGA) is used as ANN training method to improve ANN prediction accuracy and to overcome BP weaknesses such as premature convergence and local optimum. WGA also aim to avoid conventional GA weaknesses such as low population diversity and narrow search coverage. Key WGA operations are Wide Tournament Selection, Multi-Parent BLX-? Crossover, Aggregate Mate Pool Mutation and Direct Fresh Mutation-Crossover. ANN prediction accuracy measured by Median APE (MdAPE). Global optimum solution of WGA is best ANN connections weights configuration with smallest MdAPE.\",\"PeriodicalId\":31196,\"journal\":{\"name\":\"Lontar Komputer\",\"volume\":\"1 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.24843/LKJITI.2017.V08.I01.P01\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lontar Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/LKJITI.2017.V08.I01.P01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lontar Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/LKJITI.2017.V08.I01.P01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

液化建模的分析和数值求解、重复的实验室测试和昂贵的现场观测为开发简单、实用、廉价和有效的波浪液化预测开辟了机会。本研究采用人工神经网络回归模型对液化深度进行预测。尽管使用反向传播(BP)来训练神经网络,但使用一种改进的遗传算法(称为Wide GA,WGA)作为神经网络的训练方法,以提高神经网络的预测精度,并克服BP的弱点,如过早收敛和局部最优。WGA还旨在避免传统遗传算法的弱点,如种群多样性低和搜索覆盖范围窄。WGA的主要运作是广泛的锦标赛选择,多家长BLX-?杂交、聚合配偶池突变和直接新鲜突变杂交。通过中值APE(MdAPE)测量的ANN预测精度。WGA的全局最优解是具有最小MdAPE的最佳ANN连接权重配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Wave-induced Liquefaction using Artificial Neural Network and Wide Genetic Algorithm
The hassle of analytical and numerical solution for liquefaction modeling, repetitive laboratory testing and expensive field observations, have opened opportunities to develop simple, practical, inexpensive and valid prediction of wave-induced liquefaction. In this study, Artificial Neural Network (ANN) regression modeling is used to predict the depth of liquefaction. Despite of using Back Propagation (BP) to train ANN, a modified Genetic Algorithm (called as Wide GA, WGA) is used as ANN training method to improve ANN prediction accuracy and to overcome BP weaknesses such as premature convergence and local optimum. WGA also aim to avoid conventional GA weaknesses such as low population diversity and narrow search coverage. Key WGA operations are Wide Tournament Selection, Multi-Parent BLX-? Crossover, Aggregate Mate Pool Mutation and Direct Fresh Mutation-Crossover. ANN prediction accuracy measured by Median APE (MdAPE). Global optimum solution of WGA is best ANN connections weights configuration with smallest MdAPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信