扩展威布尔几何分布的贝叶斯分析

IF 0.9 Q3 STATISTICS & PROBABILITY
Azeem Ali, Sajid Ali, Shama Khaliq
{"title":"扩展威布尔几何分布的贝叶斯分析","authors":"Azeem Ali, Sajid Ali, Shama Khaliq","doi":"10.13052/jrss2229-5666.12210","DOIUrl":null,"url":null,"abstract":"The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study. \n ","PeriodicalId":42526,"journal":{"name":"Journal of Reliability and Statistical Studies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON THE BAYESIAN ANALYSIS OF EXTENDED WEIBULL-GEOMETRIC DISTRIBUTION\",\"authors\":\"Azeem Ali, Sajid Ali, Shama Khaliq\",\"doi\":\"10.13052/jrss2229-5666.12210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study. \\n \",\"PeriodicalId\":42526,\"journal\":{\"name\":\"Journal of Reliability and Statistical Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reliability and Statistical Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss2229-5666.12210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reliability and Statistical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss2229-5666.12210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了扩展威布尔几何分布的Bayes估计。特别地,我们使用不同损失函数下的非形成性和信息性先验讨论了贝叶斯估计及其后验风险。由于后验摘要无法通过分析获得,我们采用马尔可夫链蒙特卡罗(MCMC)技术来评估不同样本量的贝叶斯估计的性能。一个现实生活中的例子也是这项研究的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE BAYESIAN ANALYSIS OF EXTENDED WEIBULL-GEOMETRIC DISTRIBUTION
The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
12.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信