70克微型四旋翼直升机的设计、开发和飞行测试

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Carl Runco, Moble Benedict
{"title":"70克微型四旋翼直升机的设计、开发和飞行测试","authors":"Carl Runco, Moble Benedict","doi":"10.1177/17568293231189999","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a micro air vehicle scale quad-cyclocopter for the purpose of investigating cyclorotor application to low Reynolds number ([Formula: see text]) flight. The 70-gram vehicle is the lightest quad-cyclocopter developed to date by an order of magnitude and only the second to achieve forward flight. It utilized two counter-rotating pairs of cyclorotors operating at [Formula: see text] [Formula: see text] to generate thrust and balance the reaction torque. Each cyclorotor had two control parameters, thrust direction and magnitude, giving the quad-cyclocopter eight independent control parameters. Flight tests were conducted to demonstrate several unique maneuvers made possible by the over-actuated system: changing pitch attitude in a point hover and forward translation via thrust vectoring. Data was collected for longitudinal maneuvers to compare forward flight performance when using strictly thrust vectoring for propulsion versus pitching without thrust vectoring. Similar performance was observed between the two modes for the achieved speeds.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, development, and flight testing of a 70-gram micro quad-cyclocopter\",\"authors\":\"Carl Runco, Moble Benedict\",\"doi\":\"10.1177/17568293231189999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the development of a micro air vehicle scale quad-cyclocopter for the purpose of investigating cyclorotor application to low Reynolds number ([Formula: see text]) flight. The 70-gram vehicle is the lightest quad-cyclocopter developed to date by an order of magnitude and only the second to achieve forward flight. It utilized two counter-rotating pairs of cyclorotors operating at [Formula: see text] [Formula: see text] to generate thrust and balance the reaction torque. Each cyclorotor had two control parameters, thrust direction and magnitude, giving the quad-cyclocopter eight independent control parameters. Flight tests were conducted to demonstrate several unique maneuvers made possible by the over-actuated system: changing pitch attitude in a point hover and forward translation via thrust vectoring. Data was collected for longitudinal maneuvers to compare forward flight performance when using strictly thrust vectoring for propulsion versus pitching without thrust vectoring. Similar performance was observed between the two modes for the achieved speeds.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293231189999\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293231189999","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

为了研究旋翼在低雷诺数(公式见文)飞行中的应用,本文讨论了一种微型飞行器规模的四旋翼直升机的研制。这款重达70克的飞行器是迄今为止开发的最轻的四轴飞行器,其重量比前者轻了一个数量级,也是第二款实现向前飞行的飞行器。它利用两对反向旋转的旋翼在[公式:见文][公式:见文]工作来产生推力和平衡反作用力。每个旋翼有推力方向和推力大小两个控制参数,使四旋翼有8个独立的控制参数。飞行试验证明了过度驱动系统可以实现的几种独特机动:在点悬停时改变俯仰姿态和通过推力矢量向前平移。收集了纵向机动的数据,以比较严格使用推力矢量进行推进与不使用推力矢量进行俯仰时的前向飞行性能。对于所达到的速度,在两种模式之间观察到类似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, development, and flight testing of a 70-gram micro quad-cyclocopter
This paper discusses the development of a micro air vehicle scale quad-cyclocopter for the purpose of investigating cyclorotor application to low Reynolds number ([Formula: see text]) flight. The 70-gram vehicle is the lightest quad-cyclocopter developed to date by an order of magnitude and only the second to achieve forward flight. It utilized two counter-rotating pairs of cyclorotors operating at [Formula: see text] [Formula: see text] to generate thrust and balance the reaction torque. Each cyclorotor had two control parameters, thrust direction and magnitude, giving the quad-cyclocopter eight independent control parameters. Flight tests were conducted to demonstrate several unique maneuvers made possible by the over-actuated system: changing pitch attitude in a point hover and forward translation via thrust vectoring. Data was collected for longitudinal maneuvers to compare forward flight performance when using strictly thrust vectoring for propulsion versus pitching without thrust vectoring. Similar performance was observed between the two modes for the achieved speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信