{"title":"CMIP5和CMIP6气候模式对中国水文影响预测的比较","authors":"Yawen Lei, Jie Chen, L. Xiong","doi":"10.2166/nh.2023.108","DOIUrl":null,"url":null,"abstract":"\n Global climate model (GCM) outputs from Coupled Model Inter-comparison Project Phase 5 (CMIP5) were widely used to investigate climate change impacts last 10 years. It is important to know whether Coupled Model Inter-comparison Project Phase 6 (CMIP6) is more reliable than CMIP5. Number of studies compared GCMs from two CMIPs in simulating climate variables, but they are not in the field of hydrology for large quantities of watersheds. The objective of this study is to compare CMIP5 and CMIP6 climate model projections in projecting hydrological changes between future (2071–2100) and historical (1976–2005) periods and inter-model variability of hydrological impacts for the future period over 343 catchments in China's mainland. The results show that the GCMs in CMIP6 show more increase in daily mean temperature and mean annual precipitation. However, GCMs in CMIP6 and CMIP5 show similar increases in mean and peak streamflow. Moreover, GCMs in CMIP6 show less inter-model variability for streamflow in southern and northeastern China, but more in central China, which is consistent to that for precipitation after bias correction. Overall, this comparison provides the consistency of future change and uncertainty in predicted streamflow with climate simulations, which bring confidence for hydrological impact studies using CMIP6.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparison of CMIP5 and CMIP6 climate model projections for hydrological impacts in China\",\"authors\":\"Yawen Lei, Jie Chen, L. Xiong\",\"doi\":\"10.2166/nh.2023.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Global climate model (GCM) outputs from Coupled Model Inter-comparison Project Phase 5 (CMIP5) were widely used to investigate climate change impacts last 10 years. It is important to know whether Coupled Model Inter-comparison Project Phase 6 (CMIP6) is more reliable than CMIP5. Number of studies compared GCMs from two CMIPs in simulating climate variables, but they are not in the field of hydrology for large quantities of watersheds. The objective of this study is to compare CMIP5 and CMIP6 climate model projections in projecting hydrological changes between future (2071–2100) and historical (1976–2005) periods and inter-model variability of hydrological impacts for the future period over 343 catchments in China's mainland. The results show that the GCMs in CMIP6 show more increase in daily mean temperature and mean annual precipitation. However, GCMs in CMIP6 and CMIP5 show similar increases in mean and peak streamflow. Moreover, GCMs in CMIP6 show less inter-model variability for streamflow in southern and northeastern China, but more in central China, which is consistent to that for precipitation after bias correction. Overall, this comparison provides the consistency of future change and uncertainty in predicted streamflow with climate simulations, which bring confidence for hydrological impact studies using CMIP6.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.108\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.108","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
A comparison of CMIP5 and CMIP6 climate model projections for hydrological impacts in China
Global climate model (GCM) outputs from Coupled Model Inter-comparison Project Phase 5 (CMIP5) were widely used to investigate climate change impacts last 10 years. It is important to know whether Coupled Model Inter-comparison Project Phase 6 (CMIP6) is more reliable than CMIP5. Number of studies compared GCMs from two CMIPs in simulating climate variables, but they are not in the field of hydrology for large quantities of watersheds. The objective of this study is to compare CMIP5 and CMIP6 climate model projections in projecting hydrological changes between future (2071–2100) and historical (1976–2005) periods and inter-model variability of hydrological impacts for the future period over 343 catchments in China's mainland. The results show that the GCMs in CMIP6 show more increase in daily mean temperature and mean annual precipitation. However, GCMs in CMIP6 and CMIP5 show similar increases in mean and peak streamflow. Moreover, GCMs in CMIP6 show less inter-model variability for streamflow in southern and northeastern China, but more in central China, which is consistent to that for precipitation after bias correction. Overall, this comparison provides the consistency of future change and uncertainty in predicted streamflow with climate simulations, which bring confidence for hydrological impact studies using CMIP6.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.