$\ λ $-超曲面的稳定性和面积增长

Pub Date : 2019-11-02 DOI:10.4310/cag.2022.v30.n5.a4
Q. Cheng, G. Wei
{"title":"$\\ λ $-超曲面的稳定性和面积增长","authors":"Q. Cheng, G. Wei","doi":"10.4310/cag.2022.v30.n5.a4","DOIUrl":null,"url":null,"abstract":"In this paper, We define a $\\mathcal{F}$-functional and study $\\mathcal{F}$-stability of $\\lambda$-hypersurfaces, which extend a result of Colding-Minicozzi. Lower bound growth and upper bound growth of area for complete and non-compact $\\lambda$-hypersurfaces are studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability and area growth of $\\\\lambda$-hypersurfaces\",\"authors\":\"Q. Cheng, G. Wei\",\"doi\":\"10.4310/cag.2022.v30.n5.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, We define a $\\\\mathcal{F}$-functional and study $\\\\mathcal{F}$-stability of $\\\\lambda$-hypersurfaces, which extend a result of Colding-Minicozzi. Lower bound growth and upper bound growth of area for complete and non-compact $\\\\lambda$-hypersurfaces are studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n5.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n5.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文定义了一个$\mathcal{F}$函数,研究了$\mathcal{F}$-超曲面的稳定性,推广了Colding-Minicozzi的一个结果。研究了完备和非紧致$λ$-超曲面的面积的下界增长和上界增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability and area growth of $\lambda$-hypersurfaces
In this paper, We define a $\mathcal{F}$-functional and study $\mathcal{F}$-stability of $\lambda$-hypersurfaces, which extend a result of Colding-Minicozzi. Lower bound growth and upper bound growth of area for complete and non-compact $\lambda$-hypersurfaces are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信