多因素Volterra型随机波动率模型的渐近性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Giulia Catalini, B. Pacchiarotti
{"title":"多因素Volterra型随机波动率模型的渐近性","authors":"Giulia Catalini, B. Pacchiarotti","doi":"10.1080/07362994.2022.2120012","DOIUrl":null,"url":null,"abstract":". We study multidimensional stochastic volatility models in which the volatility process is a positive continuous function of a continuous multidimensional Volterra process that can be not self-similar. The main results obtained in this paper are a generalization of the results due, in the one-dimensional case, to Cellupica and Pacchiarotti [M. Cellupica and B. Pacchiarotti (2021) Pathwise Asymptotics for Volterra Type Stochastic Volatility Models. Journal of Theoretical Probability , 34(2):682–727]. We state some (pathwise and finite-dimensional) large deviation principles for the scaled log-price and as a consequence some (pathwise and finite-dimensional) short-time large deviation principles.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotics for multifactor Volterra type stochastic volatility models\",\"authors\":\"Giulia Catalini, B. Pacchiarotti\",\"doi\":\"10.1080/07362994.2022.2120012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study multidimensional stochastic volatility models in which the volatility process is a positive continuous function of a continuous multidimensional Volterra process that can be not self-similar. The main results obtained in this paper are a generalization of the results due, in the one-dimensional case, to Cellupica and Pacchiarotti [M. Cellupica and B. Pacchiarotti (2021) Pathwise Asymptotics for Volterra Type Stochastic Volatility Models. Journal of Theoretical Probability , 34(2):682–727]. We state some (pathwise and finite-dimensional) large deviation principles for the scaled log-price and as a consequence some (pathwise and finite-dimensional) short-time large deviation principles.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2022.2120012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2120012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

. 我们研究了波动过程是连续多维Volterra过程的一个正连续函数的多维随机波动模型,该模型可以是不自相似的。本文得到的主要结果是对一维情况下Cellupica和Pacchiarotti [M。Cellupica和B. Pacchiarotti (2021) Volterra型随机波动模型的路径渐近性。理论概率论学报,34(2):682-727。我们陈述了尺度对数价格的一些(路径和有限维)大偏差原理,以及一些(路径和有限维)短时间大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for multifactor Volterra type stochastic volatility models
. We study multidimensional stochastic volatility models in which the volatility process is a positive continuous function of a continuous multidimensional Volterra process that can be not self-similar. The main results obtained in this paper are a generalization of the results due, in the one-dimensional case, to Cellupica and Pacchiarotti [M. Cellupica and B. Pacchiarotti (2021) Pathwise Asymptotics for Volterra Type Stochastic Volatility Models. Journal of Theoretical Probability , 34(2):682–727]. We state some (pathwise and finite-dimensional) large deviation principles for the scaled log-price and as a consequence some (pathwise and finite-dimensional) short-time large deviation principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信