双调和热方程解的局部一致收敛性和最终正性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Daners, Jochen Gluck, J. Mui
{"title":"双调和热方程解的局部一致收敛性和最终正性","authors":"D. Daners, Jochen Gluck, J. Mui","doi":"10.57262/die036-0910-727","DOIUrl":null,"url":null,"abstract":"We study the evolution equation associated with the biharmonic operator on infinite cylinders with bounded smooth cross-section subject to Dirichlet boundary conditions. The focus is on the asymptotic behaviour and positivity properties of the solutions for large times. In particular, we derive the local eventual positivity of solutions. We furthermore prove the local eventual positivity of solutions to the biharmonic heat equation and its generalisations on Euclidean space. The main tools in our analysis are the Fourier transform and spectral methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local uniform convergence and eventual positivity of solutions to biharmonic heat equations\",\"authors\":\"D. Daners, Jochen Gluck, J. Mui\",\"doi\":\"10.57262/die036-0910-727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the evolution equation associated with the biharmonic operator on infinite cylinders with bounded smooth cross-section subject to Dirichlet boundary conditions. The focus is on the asymptotic behaviour and positivity properties of the solutions for large times. In particular, we derive the local eventual positivity of solutions. We furthermore prove the local eventual positivity of solutions to the biharmonic heat equation and its generalisations on Euclidean space. The main tools in our analysis are the Fourier transform and spectral methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die036-0910-727\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0910-727","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

在Dirichlet边界条件下,我们研究了具有有界光滑截面的无限圆柱体上与双调和算子相关的演化方程。重点是大时间解的渐近性和正性。特别是,我们得出了解决方案的局部最终积极性。进一步证明了双调和热方程解的局部最终正性及其在欧氏空间上的推广。我们分析的主要工具是傅立叶变换和光谱方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local uniform convergence and eventual positivity of solutions to biharmonic heat equations
We study the evolution equation associated with the biharmonic operator on infinite cylinders with bounded smooth cross-section subject to Dirichlet boundary conditions. The focus is on the asymptotic behaviour and positivity properties of the solutions for large times. In particular, we derive the local eventual positivity of solutions. We furthermore prove the local eventual positivity of solutions to the biharmonic heat equation and its generalisations on Euclidean space. The main tools in our analysis are the Fourier transform and spectral methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信