平滑工具变量分位数回归

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
David M. Kaplan
{"title":"平滑工具变量分位数回归","authors":"David M. Kaplan","doi":"10.1177/1536867X221106404","DOIUrl":null,"url":null,"abstract":"In this article, I introduce the sivqr command, which estimates the coefficients of the instrumental variables quantile regression model introduced by Chernozhukov and Hansen (2005, Econometrica 73: 245–261). The sivqr command offers several advantages over the existing ivqreg and ivqreg2 commands for estimating this instrumental variables quantile regression model, which complements the alternative “triangular model” behind cqiv and the “local quantile treatment effect” model of ivqte. Computationally, sivqr implements the smoothed estimator of Kaplan and Sun (2017, Econometric Theory 33: 105–157), who show that smoothing improves both computation time and statistical accuracy. Standard errors are computed analytically or by Bayesian bootstrap; for nonindependent and identically distributed sampling, sivqr is compatible with bootstrap. I discuss syntax and the underlying methodology, and I compare sivqr with other commands in an example.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"379 - 403"},"PeriodicalIF":3.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Smoothed instrumental variables quantile regression\",\"authors\":\"David M. Kaplan\",\"doi\":\"10.1177/1536867X221106404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, I introduce the sivqr command, which estimates the coefficients of the instrumental variables quantile regression model introduced by Chernozhukov and Hansen (2005, Econometrica 73: 245–261). The sivqr command offers several advantages over the existing ivqreg and ivqreg2 commands for estimating this instrumental variables quantile regression model, which complements the alternative “triangular model” behind cqiv and the “local quantile treatment effect” model of ivqte. Computationally, sivqr implements the smoothed estimator of Kaplan and Sun (2017, Econometric Theory 33: 105–157), who show that smoothing improves both computation time and statistical accuracy. Standard errors are computed analytically or by Bayesian bootstrap; for nonindependent and identically distributed sampling, sivqr is compatible with bootstrap. I discuss syntax and the underlying methodology, and I compare sivqr with other commands in an example.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":\"22 1\",\"pages\":\"379 - 403\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X221106404\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221106404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 5

摘要

在这篇文章中,我介绍了sivqr命令,它估计了Chernozhukov和Hansen(2005,Econometrica 73:245-261)引入的工具变量分位数回归模型的系数。与现有的ivqreg和ivqreg2命令相比,sivqr命令在估计该工具变量分位数回归模型方面提供了几个优势,该模型补充了cqiv背后的替代“三角模型”和ivqte的“局部分位数治疗效果”模型。在计算上,sivqr实现了Kaplan和Sun(2017,计量经济学理论33:105-157)的平滑估计器,他们表明平滑可以提高计算时间和统计精度。标准误差是通过分析或贝叶斯自举计算的;对于非依赖和同分布采样,sivqr与bootstrap兼容。我讨论了语法和底层方法,并在一个示例中将sivqr与其他命令进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothed instrumental variables quantile regression
In this article, I introduce the sivqr command, which estimates the coefficients of the instrumental variables quantile regression model introduced by Chernozhukov and Hansen (2005, Econometrica 73: 245–261). The sivqr command offers several advantages over the existing ivqreg and ivqreg2 commands for estimating this instrumental variables quantile regression model, which complements the alternative “triangular model” behind cqiv and the “local quantile treatment effect” model of ivqte. Computationally, sivqr implements the smoothed estimator of Kaplan and Sun (2017, Econometric Theory 33: 105–157), who show that smoothing improves both computation time and statistical accuracy. Standard errors are computed analytically or by Bayesian bootstrap; for nonindependent and identically distributed sampling, sivqr is compatible with bootstrap. I discuss syntax and the underlying methodology, and I compare sivqr with other commands in an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信