{"title":"基于贝叶斯的全局搜索与Hooke–Jeeves局部精化的混合多目标优化问题","authors":"Linas Litvinas","doi":"10.15388/namc.2022.27.26558","DOIUrl":null,"url":null,"abstract":"The proposed multi-objective optimization algorithm hybridizes random global search with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective optimization algorithm. The site of current computation of the objective functions by the proposed algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the approximation of the Pareto front. The developed hybrid algorithm is tested under conditions previously applied to test other Bayesian algorithms so that performance could be compared. Other experiments were performed to assess the efficiency of the proposed algorithm under conditions where the previous versions of Bayesian algorithms were not appropriate because of the number of objectives and/or dimensionality of the decision space.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid of Bayesian-based global search with Hooke–Jeeves local refinement for multi-objective optimization problems\",\"authors\":\"Linas Litvinas\",\"doi\":\"10.15388/namc.2022.27.26558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed multi-objective optimization algorithm hybridizes random global search with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective optimization algorithm. The site of current computation of the objective functions by the proposed algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the approximation of the Pareto front. The developed hybrid algorithm is tested under conditions previously applied to test other Bayesian algorithms so that performance could be compared. Other experiments were performed to assess the efficiency of the proposed algorithm under conditions where the previous versions of Bayesian algorithms were not appropriate because of the number of objectives and/or dimensionality of the decision space.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.26558\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26558","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A hybrid of Bayesian-based global search with Hooke–Jeeves local refinement for multi-objective optimization problems
The proposed multi-objective optimization algorithm hybridizes random global search with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective optimization algorithm. The site of current computation of the objective functions by the proposed algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the approximation of the Pareto front. The developed hybrid algorithm is tested under conditions previously applied to test other Bayesian algorithms so that performance could be compared. Other experiments were performed to assess the efficiency of the proposed algorithm under conditions where the previous versions of Bayesian algorithms were not appropriate because of the number of objectives and/or dimensionality of the decision space.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.