{"title":"偏Steiner系统的个数与d-分区","authors":"R. Hofstad, R. Pendavingh, J. V. D. Pol","doi":"10.19086/aic.32563","DOIUrl":null,"url":null,"abstract":"We prove asymptotic upper bounds on the number of $d$-partitions (paving matroids of fixed rank) and partial Steiner systems (sparse paving matroids of fixed rank), using a mixture of entropy counting, sparse encoding, and the probabilistic method.","PeriodicalId":36338,"journal":{"name":"Advances in Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The number of partial Steiner systems and d-partitions\",\"authors\":\"R. Hofstad, R. Pendavingh, J. V. D. Pol\",\"doi\":\"10.19086/aic.32563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove asymptotic upper bounds on the number of $d$-partitions (paving matroids of fixed rank) and partial Steiner systems (sparse paving matroids of fixed rank), using a mixture of entropy counting, sparse encoding, and the probabilistic method.\",\"PeriodicalId\":36338,\"journal\":{\"name\":\"Advances in Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/aic.32563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.32563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
The number of partial Steiner systems and d-partitions
We prove asymptotic upper bounds on the number of $d$-partitions (paving matroids of fixed rank) and partial Steiner systems (sparse paving matroids of fixed rank), using a mixture of entropy counting, sparse encoding, and the probabilistic method.