电力线(包括平行线)的功率损耗细节

IF 0.5 Q4 PHYSICS, APPLIED
J. Survilo
{"title":"电力线(包括平行线)的功率损耗细节","authors":"J. Survilo","doi":"10.2478/lpts-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Reducing power losses is invested in the trend of combating climate warming. It is necessary to know what parameters of power transmission lines affect the losses in them. In short and medium lines with accounted lumped parameters, the role and influence of the line parameters on losses are visible. In the lines with distributed parameters, at least with one series parameter and one parallel parameter, the role played by them, computing losses in ordinary way as difference between power at line sending and receiving end, is hidden. This is pronounced when considering parallel lines. In two parallel lines the losses can be greater than in a single line. This may occur when the current at the end of the lines is less than the boundary value: the value when two parallel lines and a single line have the same losses. The longer the line and the higher the rated voltage, the stronger the effect. In view of this aspect, it is necessary to know the boundary current. This current can be determined in ordinary way by a series of calculations changing the load value. In some cases, boundary current is affected not only by modulus of the current at the end of the line but also by its angle. It is better to calculate the boundary current by a formula, while studying the role of each parameter.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"59 1","pages":"155 - 169"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specifics of Power Losses in Power Lines Including Parallel Lines\",\"authors\":\"J. Survilo\",\"doi\":\"10.2478/lpts-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Reducing power losses is invested in the trend of combating climate warming. It is necessary to know what parameters of power transmission lines affect the losses in them. In short and medium lines with accounted lumped parameters, the role and influence of the line parameters on losses are visible. In the lines with distributed parameters, at least with one series parameter and one parallel parameter, the role played by them, computing losses in ordinary way as difference between power at line sending and receiving end, is hidden. This is pronounced when considering parallel lines. In two parallel lines the losses can be greater than in a single line. This may occur when the current at the end of the lines is less than the boundary value: the value when two parallel lines and a single line have the same losses. The longer the line and the higher the rated voltage, the stronger the effect. In view of this aspect, it is necessary to know the boundary current. This current can be determined in ordinary way by a series of calculations changing the load value. In some cases, boundary current is affected not only by modulus of the current at the end of the line but also by its angle. It is better to calculate the boundary current by a formula, while studying the role of each parameter.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"59 1\",\"pages\":\"155 - 169\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

减少电力损耗是应对气候变暖的必然趋势。有必要了解输电线路的哪些参数会影响线路中的损耗。在考虑了集总参数的中短线路中,线路参数对损耗的作用和影响是可见的。在具有分布参数的线路中,至少有一个串联参数和一个并联参数,它们所起的作用被隐藏起来,以普通方式计算损耗作为线路发送端和接收端的功率差。在考虑平行线时,这一点很明显。在两条平行线中,损耗可能大于单线。这可能发生在线路末端的电流小于边界值时:当两条平行线和一条单线具有相同的损耗时的值。线路越长,额定电压越高,效果越强。考虑到这一点,有必要了解边界电流。该电流可以通过改变负载值的一系列计算以普通方式确定。在某些情况下,边界电流不仅受线路末端电流模量的影响,而且受其角度的影响。边界电流最好用公式计算,同时研究各参数的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specifics of Power Losses in Power Lines Including Parallel Lines
Abstract Reducing power losses is invested in the trend of combating climate warming. It is necessary to know what parameters of power transmission lines affect the losses in them. In short and medium lines with accounted lumped parameters, the role and influence of the line parameters on losses are visible. In the lines with distributed parameters, at least with one series parameter and one parallel parameter, the role played by them, computing losses in ordinary way as difference between power at line sending and receiving end, is hidden. This is pronounced when considering parallel lines. In two parallel lines the losses can be greater than in a single line. This may occur when the current at the end of the lines is less than the boundary value: the value when two parallel lines and a single line have the same losses. The longer the line and the higher the rated voltage, the stronger the effect. In view of this aspect, it is necessary to know the boundary current. This current can be determined in ordinary way by a series of calculations changing the load value. In some cases, boundary current is affected not only by modulus of the current at the end of the line but also by its angle. It is better to calculate the boundary current by a formula, while studying the role of each parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
16.70%
发文量
41
审稿时长
5 weeks
期刊介绍: Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信