Taguchi实验设计用于骨科应用的不同生物植入材料的摩擦学研究

Q3 Engineering
S. Solanke, V. Gaval
{"title":"Taguchi实验设计用于骨科应用的不同生物植入材料的摩擦学研究","authors":"S. Solanke, V. Gaval","doi":"10.30678/fjt.103070","DOIUrl":null,"url":null,"abstract":"In this research ball on disc wear tests have been carried out with ASTM G-99 standard at room temperature in simulated body fluid. The tribological property such as the coefficient of friction and wear weight loss was studied by using the Taguchi design of experiments. The design of the experiment was done using L8 orthogonal array to determine the collective contribution of the wear parameters. An analysis of variance demonstrated that the individual contribution of type of material factor was 97.15% and 66.66% for the coefficient of friction and wear weight loss respectively, which is the highest individual contribution as compared to other factors. It was concluded that the coefficient of friction and wear weight loss is mainly influenced by type of material factor. The analysis of the signal-to-noise ratio shows that the optimal coefficient of friction and wear weight loss was obtained with CoCrMo material at an applied normal load of 5 N with a sliding velocity of 0.05 m/s for a track diameter of 30 mm. To check the accuracy of results a confirmation test was carried out which indicates that predicted values are very close to the experimental values and the model is significant to predict the coefficient of friction. The results showed that the coefficient of friction and wear weight loss increases with increasing the applied load and sliding velocity. The microstructure of all substrates materials was analyzed using a scanning electron microscope. Wear track study showed that adhesive dominant wear mechanism for all four different substrate materials.","PeriodicalId":35004,"journal":{"name":"Tribologia: Finnish Journal of Tribology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological studies of different bioimplant materials for orthopedic application using Taguchi experimental design\",\"authors\":\"S. Solanke, V. Gaval\",\"doi\":\"10.30678/fjt.103070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research ball on disc wear tests have been carried out with ASTM G-99 standard at room temperature in simulated body fluid. The tribological property such as the coefficient of friction and wear weight loss was studied by using the Taguchi design of experiments. The design of the experiment was done using L8 orthogonal array to determine the collective contribution of the wear parameters. An analysis of variance demonstrated that the individual contribution of type of material factor was 97.15% and 66.66% for the coefficient of friction and wear weight loss respectively, which is the highest individual contribution as compared to other factors. It was concluded that the coefficient of friction and wear weight loss is mainly influenced by type of material factor. The analysis of the signal-to-noise ratio shows that the optimal coefficient of friction and wear weight loss was obtained with CoCrMo material at an applied normal load of 5 N with a sliding velocity of 0.05 m/s for a track diameter of 30 mm. To check the accuracy of results a confirmation test was carried out which indicates that predicted values are very close to the experimental values and the model is significant to predict the coefficient of friction. The results showed that the coefficient of friction and wear weight loss increases with increasing the applied load and sliding velocity. The microstructure of all substrates materials was analyzed using a scanning electron microscope. Wear track study showed that adhesive dominant wear mechanism for all four different substrate materials.\",\"PeriodicalId\":35004,\"journal\":{\"name\":\"Tribologia: Finnish Journal of Tribology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribologia: Finnish Journal of Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30678/fjt.103070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribologia: Finnish Journal of Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30678/fjt.103070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用ASTM G-99标准在室温下模拟体液中进行了球-盘磨损试验。采用田口实验设计,研究了摩擦系数、磨损失重等摩擦学性能。使用L8正交阵列进行实验设计,以确定磨损参数的集体贡献。方差分析表明,材料类型因素对摩擦系数和磨损重量损失的个体贡献分别为97.15%和66.66%,与其他因素相比,这是最高的个体贡献。结果表明,摩擦系数和磨损失重主要受材料因素类型的影响。信噪比分析表明,CoCrMo材料在施加5N的法向载荷、0.05m/s的滑动速度和30mm的轨道直径下获得了最佳的摩擦系数和磨损重量损失。为了检查结果的准确性,进行了确认测试,结果表明预测值与实验值非常接近,该模型对预测摩擦系数具有重要意义。结果表明,摩擦系数和磨损失重随着载荷和滑动速度的增加而增加。使用扫描电子显微镜分析了所有基底材料的微观结构。磨损轨迹研究表明,对于所有四种不同的基体材料,粘着磨损机制占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribological studies of different bioimplant materials for orthopedic application using Taguchi experimental design
In this research ball on disc wear tests have been carried out with ASTM G-99 standard at room temperature in simulated body fluid. The tribological property such as the coefficient of friction and wear weight loss was studied by using the Taguchi design of experiments. The design of the experiment was done using L8 orthogonal array to determine the collective contribution of the wear parameters. An analysis of variance demonstrated that the individual contribution of type of material factor was 97.15% and 66.66% for the coefficient of friction and wear weight loss respectively, which is the highest individual contribution as compared to other factors. It was concluded that the coefficient of friction and wear weight loss is mainly influenced by type of material factor. The analysis of the signal-to-noise ratio shows that the optimal coefficient of friction and wear weight loss was obtained with CoCrMo material at an applied normal load of 5 N with a sliding velocity of 0.05 m/s for a track diameter of 30 mm. To check the accuracy of results a confirmation test was carried out which indicates that predicted values are very close to the experimental values and the model is significant to predict the coefficient of friction. The results showed that the coefficient of friction and wear weight loss increases with increasing the applied load and sliding velocity. The microstructure of all substrates materials was analyzed using a scanning electron microscope. Wear track study showed that adhesive dominant wear mechanism for all four different substrate materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribologia: Finnish Journal of Tribology
Tribologia: Finnish Journal of Tribology Materials Science-Surfaces, Coatings and Films
CiteScore
2.20
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信