生废咖啡渣去除水中碱性紫3的动力学、等温及机理研究

IF 1.4 Q3 CHEMISTRY, MULTIDISCIPLINARY
I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, Maria Jabri, Abderahim Kali, F. Aziz
{"title":"生废咖啡渣去除水中碱性紫3的动力学、等温及机理研究","authors":"I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, Maria Jabri, Abderahim Kali, F. Aziz","doi":"10.22036/PCR.2020.225170.1751","DOIUrl":null,"url":null,"abstract":"This work examines the possibility of removing the crystal violet (a cationic dye), used in the dyeing of cotton, wood, and silk, onto untreated coffee waste. The influence of various experimental parameters on the adsorption of crystal violet has been analysed: pH, adsorbent dose and initial dye concentration. Optimum adsorption of crystal violet took place at pH 6 and at lower temperatures. Further, the adsorbent was characterised by Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis revealed the presence of several functional groups that are responsible for the adsorption process. Adsorption equilibrium follows Langmuir’s model with maximum retention of 63.3 mg/g. The kinetics of the crystal violet adsorption were studied using the pseudo-first order and pseudo-second order equations. Adsorption of the dye can be described by pseudo-second order kinetics, reaching the equilibrium at 40 min. The value of the activation energy shows that adsorption is physisorption. Weber-Morris model indicates that this adsorption occurs in two steps. Thermodynamic parameters suggest that the adsorption is spontaneous and exothermic.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"8 1","pages":"569-584"},"PeriodicalIF":1.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Kinetic, Isotherm and Mechanism Investigations of the Removal of Basic Violet 3 from Water by Raw Spent Coffee Grounds\",\"authors\":\"I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, Maria Jabri, Abderahim Kali, F. Aziz\",\"doi\":\"10.22036/PCR.2020.225170.1751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the possibility of removing the crystal violet (a cationic dye), used in the dyeing of cotton, wood, and silk, onto untreated coffee waste. The influence of various experimental parameters on the adsorption of crystal violet has been analysed: pH, adsorbent dose and initial dye concentration. Optimum adsorption of crystal violet took place at pH 6 and at lower temperatures. Further, the adsorbent was characterised by Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis revealed the presence of several functional groups that are responsible for the adsorption process. Adsorption equilibrium follows Langmuir’s model with maximum retention of 63.3 mg/g. The kinetics of the crystal violet adsorption were studied using the pseudo-first order and pseudo-second order equations. Adsorption of the dye can be described by pseudo-second order kinetics, reaching the equilibrium at 40 min. The value of the activation energy shows that adsorption is physisorption. Weber-Morris model indicates that this adsorption occurs in two steps. Thermodynamic parameters suggest that the adsorption is spontaneous and exothermic.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"8 1\",\"pages\":\"569-584\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.225170.1751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.225170.1751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

这项工作考察了在未经处理的咖啡废料上去除结晶紫(一种阳离子染料)的可能性,结晶紫用于棉花、木材和丝绸的染色。分析了不同实验参数对结晶紫吸附的影响:pH、吸附剂用量和染料初始浓度。结晶紫的最佳吸附发生在pH 6和较低的温度下。此外,通过傅立叶变换红外光谱(FTIR)对吸附剂进行了表征。FTIR分析显示存在几个负责吸附过程的官能团。吸附平衡符合Langmuir模型,最大保留量为63.3mg/g。采用拟一阶和拟二阶方程研究了结晶紫的吸附动力学。染料的吸附可以用拟二阶动力学来描述,在40分钟时达到平衡。活化能的值表明吸附是物理吸附。Weber-Morris模型表明,这种吸附分两步进行。热力学参数表明吸附是自发的和放热的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetic, Isotherm and Mechanism Investigations of the Removal of Basic Violet 3 from Water by Raw Spent Coffee Grounds
This work examines the possibility of removing the crystal violet (a cationic dye), used in the dyeing of cotton, wood, and silk, onto untreated coffee waste. The influence of various experimental parameters on the adsorption of crystal violet has been analysed: pH, adsorbent dose and initial dye concentration. Optimum adsorption of crystal violet took place at pH 6 and at lower temperatures. Further, the adsorbent was characterised by Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis revealed the presence of several functional groups that are responsible for the adsorption process. Adsorption equilibrium follows Langmuir’s model with maximum retention of 63.3 mg/g. The kinetics of the crystal violet adsorption were studied using the pseudo-first order and pseudo-second order equations. Adsorption of the dye can be described by pseudo-second order kinetics, reaching the equilibrium at 40 min. The value of the activation energy shows that adsorption is physisorption. Weber-Morris model indicates that this adsorption occurs in two steps. Thermodynamic parameters suggest that the adsorption is spontaneous and exothermic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Research
Physical Chemistry Research CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
8.30%
发文量
18
期刊介绍: The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信