{"title":"表面和体积的联合神经去噪","authors":"Nikolai Hofmann, J. Hasselgren, Jacob Munkberg","doi":"10.1145/3585497","DOIUrl":null,"url":null,"abstract":"Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 16"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Neural Denoising of Surfaces and Volumes\",\"authors\":\"Nikolai Hofmann, J. Hasselgren, Jacob Munkberg\",\"doi\":\"10.1145/3585497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.\",\"PeriodicalId\":74536,\"journal\":{\"name\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"volume\":\" \",\"pages\":\"1 - 16\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3585497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.