{"title":"Galoiscoverings的相对L2指数定理","authors":"M. Benameur","doi":"10.2140/akt.2021.6.503","DOIUrl":null,"url":null,"abstract":"Given a Galois covering of complete spin manifolds where the base metric has PSC near infinity, we prove that for small enough epsilon > 0, the epsilon spectral projection of the Dirac operator has finite trace in the Atiyah von Neumann algebra. This allows us to define the L2 index in the even case and we prove its compatibility with the Xie-Yu higher index. We also deduce L2 versions of the classical Gromov-Lawson relative index theorems. Finally, we briefly discuss some Gromov-Lawson L2 invariants.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The relative L2 index theorem for Galois\\ncoverings\",\"authors\":\"M. Benameur\",\"doi\":\"10.2140/akt.2021.6.503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a Galois covering of complete spin manifolds where the base metric has PSC near infinity, we prove that for small enough epsilon > 0, the epsilon spectral projection of the Dirac operator has finite trace in the Atiyah von Neumann algebra. This allows us to define the L2 index in the even case and we prove its compatibility with the Xie-Yu higher index. We also deduce L2 versions of the classical Gromov-Lawson relative index theorems. Finally, we briefly discuss some Gromov-Lawson L2 invariants.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
给定一个完全自旋流形的伽罗瓦覆盖,其中基本度规的PSC接近无穷大,我们证明了对于足够小的epsilon > 0,狄拉克算子的epsilon谱投影在Atiyah von Neumann代数中具有有限迹。这允许我们在偶数情况下定义L2指数,并证明其与协余高指数的兼容性。我们还推导了经典Gromov-Lawson相对指数定理的L2版本。最后,我们简要讨论了一些Gromov-Lawson L2不变量。
The relative L2 index theorem for Galois
coverings
Given a Galois covering of complete spin manifolds where the base metric has PSC near infinity, we prove that for small enough epsilon > 0, the epsilon spectral projection of the Dirac operator has finite trace in the Atiyah von Neumann algebra. This allows us to define the L2 index in the even case and we prove its compatibility with the Xie-Yu higher index. We also deduce L2 versions of the classical Gromov-Lawson relative index theorems. Finally, we briefly discuss some Gromov-Lawson L2 invariants.